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1. Introduction

The T1A1.5 working group has been working toward a set of standards for the
measurement of the quality of compressed digital video [e.g., 2, 6, 11, 12, 13, 17. 19, 20,
26].  The benefits of standards for the measurement of video quality have been cited by
many (e.g., see [15], pg.2).  New, objective measures of video transmission quality are
needed by standards organizations, end users, and providers of advanced video services.
Such measures will promote impartial, reliable, repeatable, and cost effective assessment
of video and image transmission system performance and increased competition among
providers as well as a better capability of procurers and standards organizations to
specify and evaluate new systems.

The T1A1.5 working group has been approaching the issue of video quality standards by
means of a research program.  The general scientific method used has been to test digital
codecs and take data of two types: (a) a set of objective measures, and (b) subjective
judgments by human judges.  Statistical analyses reveal which objective measures best
predict the subjective judgments.  A multi-lab collaborative study of this type [see 20,
21], mounted by T1A1.5 members, covered a wide range of digital video systems, from
bit rates of about 100 kb/s to 45 Mb/s.  A set of objective measures of video quality
developed at NTIA/ITS performed well in accounting for subjective judgments by human
observers on these same systems.

The T1A1.5 multi-lab study was large, well done, and successful.  But, it was not
conclusive in the sense of pre-empting future studies.  Furthermore, this study did not
cover high bit-rate entertainment video systems very thoroughly (by design):  Only three
systems were at or above 1.5 Mb/s, and of those one was VHS.  No systems were tested
with bit rates between 1.5 and 45 Mb/s.

The present studies were conducted to fill in the bit-rate gap in the previous T1A1.5
multi-lab study.  In particular, the current studies concentrate on bit rates from 1.5 to 8.3
Mb/s and they examine MPEG 1 and MPEG 2 codecs specifically.  The effectiveness of
the ANSI T1.801.03 objective video quality metrics are examined for these bit rates and
coding technologies.  In addition, the NTIA/ITS video quality laboratory has been
recently upgraded to implement and test matrix metrics (e.g., metrics that perform pixel
by pixel comparisons of the input and output images) on large video data sets.  This
added capability (which did not exist for the previous T1A1.5 multi-lab study) has made
possible the evaluation of three matrix video quality metrics; peak signal to noise ratio
(PSNR), and two previously introduced [15, 16] matrix versions of spatial information
(SI) distortion (see section 6.1.1.1 of ANSI T1.801.03 for a definition of spatial
information for a pixel).  One matrix SI distortion metric measures the amount of false
edges in the output image and the other measures the amount of missing edges.  Since
spatial registration of the input and output images is critical for successful
implementation of matrix measures, a considerable effort has been made here to describe
the image calibration algorithms that were used by the objective measurement system.
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2. Overview of the Two Studies

2.1 HRCs1 and Scenes

The data and analyses reported here come from two previous data-collection efforts, one
on MPEG1 codecs (i.e., coder-decoders) and one on MPEG2 codecs [1, 2].  Both of these
studies followed the strategy:

-  Choose a set of HRCs for testing that includes as wide a range of video quality
as possible within the usage domain (in this case, entertainment).

-  Among the HRCs, include current products for comparison, e.g., VHS and
cable.

-  Test each of the HRCs with the same set of test sequences.

-  Test each HRC end-to-end, i.e., using a full cycle of coding, transmission, and
decoding.

-  Use test sequences that are typical of the material that actual consumers would
view using such HRCs.

-  Use recordings of the HRC-scene pairs, rather than creating each sequence live
during testing and analysis.

Following this strategy, the HRCs tested were, in Study 1:

1. MPEG 1      Bit rate 1.5 Mb/s        Vertical resolution 240 lines

2. MPEG 1      Bit rate 2.2 Mb/s        Vertical resolution 240 lines

3. MPEG 1+    Bit rate 3.9 Mb/s        Vertical resolution 480 lines

4. MPEG 1+    Bit rate 5.3 Mb/s        Horizontal resolution 330-400 pixels,
Vertical resolution 480 lines

5. MPEG 1+    Bit rate 8.3 Mb/s        Horizontal resolution 330-400 pixels,
Vertical resolution 480 lines

6. Original scene with a signal-to-noise ratio of 34 dB

7. Original scene with a signal-to-noise ratio of 37 dB

8. Original scene with a signal-to-noise ratio of 40 dB

9. Original scene recorded and played back from a VHS VCR.

10. Original scene with no further processing.

And, in Study 2, the HRCs were:

1. MPEG 2 Bit rate 3.0 Mb/s Resolution 352 (codec setup) X 480 lines

                                                
1 The term Hypothetical Reference Circuit (HRC) refers to a specific realization of a video transmission
system.  Such a video transmission system may include coders, digital transmission circuits, decoders, and
even analog processing (e.g., VHS) of the video signal.
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2. MPEG 1+ Bit rate 3.9 Mb/s Resolution 352 (codec setup) X 480 lines

3. MPEG 2 Bit rate 3.9 Mb/s Resolution 352 (codec setup) X 480 lines

4. MPEG 2 Bit rate 5.3 Mb/s Resolution 704 (codec setup) X 480 lines

5. MPEG 2 Bit rate 8.3 Mb/s Resolution 704 (codec setup) X 480 lines

6. Original scene with a signal-to-noise ratio (SNR) of 34 dB

7. Original scene with a signal-to-noise ratio of 37 dB

8. Original scene with a signal-to-noise ratio of 40 dB

9. Original scene recorded and played back from a VHS VCR

10. Original scene with no further processing.

The random noise for HRCs 6-8 in each study was added to the signals by attenuating a
modulated version of the signals before passing them on to a demodulator.  The SNR was
measured with a Tektronics VM700 video test instrument.  To avoid introducing jitter
when recording these signals, the noise on the synchronizing pulses was removed by
regenerating them in a processing amplifier.  The VHS unit used was a consumer model,
rather than a laboratory model.  Note that MPEG 1+ at 3.9 Mb/s and the comparison
HRCs 6-10 were used in both studies.  Two studies, rather than one larger study, were
conducted because the MPEG 2 codecs were not available at the time of the first study.

The same set of scenes was used in both studies.  The scenes were chosen to span a range
of difficulty, within the general domain of entertainment.  They were not all chosen to
stress the codecs as much as possible.  Each scene was 14 seconds long.  The length of
the scenes was chosen so that the sum of all combinations of the scenes and the HRCs
plus an original of each scene would be less than 20 minutes, which is the limit for high
quality record/playback from the Panasonic video disc machine we used.  Four of the
scenes are clips from movies and four of the scenes are clips from sporting events.  The
sources for the movie clips were commercial laser discs copied to MII equipment using a
Y/C component connection.  The sports event scenes were supplied by local broadcasters
on Betacam SP tape.  The clips chosen for the two studies were as follows:

1. A clip from the movie "2001: A Space Odyssey".  It shows a man running in a
cylindrical track in a space ship.  The runner remains stationary with respect to
the camera.  The circular walls apparently move from behind the camera (and
viewer), rotating about an axis parallel to the plane of the picture.  The walls
have quite a lot of detail and sharp edges.

2. A clip from the movie "The Graduate".  It  shows a slow camera zoom towards
a woman (Ann Bancroft) sitting on a chaise.  Behind her is a background of
leaves that are large enough so that many edges appear.

3. A clip from the movie "The Godfather". It shows two men talking in low
ambient light, with very little apparent color (Al Pacino at a restaurant with an
enemy of Don Corleone).  The camera focus is soft.  The important movements
are subtle facial expressions.
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4. A clip from the movie "Being There" showing two men talking (Peter Sellers
and a government representative).  Again there is very little color, and the only
movements are subtle facial expressions.

5.  Ice hockey clip #1 is dominated by a fight in which the camera remains
stationary, but there is much movement among the players.  The background is
very high-contrast, consisting of bright ice with a highly detailed and colorful
crowd above the ice.

6.  Ice hockey clip #2  shows much movement up and down the ice with the
camera following a skater or the puck, panning across the background.  The
clip is from the same game (and the same background of ice and crowd) as
hockey clip #1.

7.  A basketball clip includes many scene cuts (from one camera to another).  One
main sequence shows a close-up of a player (Charles Barkley) running down
the court, with the background crowd and other players a blur behind him.
Another shows a close-up of the Bulls' coach moving slowly in front of the
bench and crowd.  The third main sequence (packed into the 14 sec scene)
shows a long distance shot of half-court play in which there is a great amount
of fine detail, but the total amount of movement on the screen is small.

8.  A baseball clip also includes several scene cuts.  The viewer sees two close-
ups of the pitcher on different pitches, with a stationary and moderately
detailed background.  There are two shots of batters stationary against the
background of stadium walls and crowd.  There are also two shots of base-
runners trotting against the background of the field markings after a walk.
Finally, there is a long distance shot in which the camera tracks a long fly ball
(barely visible in the original), with the field, stadium walls, and crowd as the
background.

2.2 Production of Video Material

2.2.1 MPEG 1+ study

Figure 1 describes the steps in producing the video material (a) in the form it was shipped
for objective analysis, and (b) in the form it was presented to consumers for ratings.  The
video processing for the objective analysis and the subjective testing followed the same
series of steps until the final step.  The reader will note that there are more tape
generations than would be ideal.  Whatever noise was added to the video signal during
this processing became part of the end-to-end system performance that was evaluated
both by the consumers and the objective measures.  The added noise was certainly not of
a magnitude to hide other processing artifacts, and it affected all of the HRCs equally.



5

2.2.2 MPEG 2 study

Figure 2 describes the steps in producing the video material for the MPEG2 study (a) in
the form it was shipped for objective analysis, and (b) in the form it was presented to
consumers for ratings.  The reader will note that there were fewer processing steps to
produce the WORM disc in this study than in the preceding MPEG1+ study.  This would
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not affect the relationships among the HRCs within the MPEG 2 study, compared to the
relationships of HRCs within the MPEG 1+ study.  However, it might give the HRCs
from the MPEG 2 study a slight advantage over the HRCs in the MPEG 1+ study.  (We
did not see such an effect, however, in our own observation; the analog tape equipment
used is of very high quality.)
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Note that one extra dub of the Betacam SP was required at NTIA/ITS to insert vertical
interval time code (VITC), which was required for frame capture by the NTIA/ITS
objective measurement system but which was inadvertently left off in the first Betacam
SP dub.  Side by side subjective comparisons of the video from the two Betacam SP tapes
revealed that a slight amount of visible noise was introduced by this extra Betacam SP
dub.

3. Objective Measures

3.1 Performance Measurement Issues for Digital Video Systems

3.1.1 Input Scene Dependencies

The advent of video compression, storage, and transmission systems has exposed
fundamental limitations of techniques and methodologies that have traditionally been
used to measure video performance.  Traditional performance parameters have relied on
the “constancy” of a video system’s performance for different input scenes.  Thus, one
could inject a test pattern or test signal (e.g., a static multi-burst), measure some resulting
system attribute (e.g., frequency response), and be relatively confident that the system
would respond similarly for other video material (e.g., video with motion).2  A great deal
of research has been performed to relate the traditional analog video performance
parameters (e.g., differential gain, differential phase, short time waveform distortion, etc.)
to perceived changes in video quality [3, 4, 5].  While the recent advent of video
compression, storage, and transmission systems has not invalidated these traditional
parameters, it has certainly made their connection with perceived video quality much
more tenuous.  Digital video systems adapt and change their behavior depending upon
the input scene.  Therefore, attempts to use input scenes that are different from what is
actually used “in-service” 3 can result in erroneous and misleading results.  Variations in
subjective performance ratings as large as 3 quality units on a subjective quality scale
that runs from 1 to 5 (1=lowest rating, 5=highest rating) have been noted in tests of
commercially available systems.  While quality dependencies on the input scene tend to
become much more prevalent at higher compression ratios, they also are observed at
lower compression ratios.  For example see [6], where subjective test results of 45-Mb/s
contribution quality systems (i.e., systems now used by broadcasters to transmit over
long-line digital networks) revealed one transmission system with multiple tandem
codecs whose subjective performance varied from 2.16 to 4.64 quality units.

A digital video transmission system that works fine for video teleconferencing might be
inadequate for entertainment television.  Specifying the performance of a digital video
system as a function of the video scene coding difficulty yields a much more complete
description of system performance.  Recognizing the need to select appropriate input

                                                
2 The subjective, or user-perceived, quality of analog video systems can also depend upon the scene
content.  For example, a fixed analog noise level may be less objectionable for some scenes than others.
3 With “in-service” measurements, the transmission system is available for use by the end-user.  With “out-
of-service” measurements, the transmission system is not available for use by the end-user.
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scenes for testing, algorithms have been developed for quantifying the expected coding
difficulty of an input scene based on the amount of spatial detail and motion [7, Annex A
of 8].  Other methods have been proposed for determining the picture-content failure
characteristic for the system under consideration [Appendices 1 and 2 to Annex 1 of 9].
National and international standards have been developed that specify standard video
scenes for testing digital video systems [8, 10, 11].  Use of these standards assures that
users compare apples to apples when evaluating systems from different suppliers.

3.1.2 New Digital Video Impairments

Digital video systems produce fundamentally different kinds of impairments than analog
video systems.  Examples of these include tiling, error blocks, smearing, jerkiness, edge
busyness, and object retention [12].  To fully quantify the performance characteristics of
a digital video system, it is desirable to have a set of performance parameters, where each
parameter is sensitive to some unique dimension of video quality or impairment type.
This is similar to what was developed for analog impairments (e.g., a multi-burst test
would measure the frequency response, and a signal-to-noise ratio test would measure the
analog noise level). This discrimination property of performance parameters is useful to
designers trying to optimize certain system attributes over others, and to network
operators wanting to know not only when a system is failing but where and how it is
failing.

Also of interest is how a user weighs the different performance attributes of a digital
video system (e.g., spatial resolution, temporal resolution, or color reproduction
accuracy) when subjectively rating the quality of the experience.  The process of
estimating these subjective quality ratings from objective performance parameter data is
an important new area of work that will be discussed below.

3.1.3 The Need for Technology Independence

The constancy of analog video systems over the past 4 decades provided the necessary
long term development cycle to produce today’s accurate analog video test equipment.
In contrast, the rapid evolution of digital video compression, storage, and transmission
technology presents a much more difficult performance measurement task.  To avoid
immediate obsolescence, new performance measurement technology developed for
digital video systems must be technology independent, or not dependent upon specific
coding algorithms or transport architectures.  One way to achieve technology
independence is to have the test instrument perceive and measure video impairments like
a human being.  Fortunately, the computational resources needed to achieve these
measurement operations are becoming available.

3.2 A New Objective Measurement Methodology

The above issues have necessitated the development of a new measurement methodology
for testing the performance of digital video systems.  Rather than being limited to
artificial test signals, this methodology is one that can use natural video scenes.  Figure 3
presents the reference model for measuring end-to-end video performance parameters
and summarizes the principles of the new measurement methodology detailed in ANSI
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T1.801.03, “American National Standard for Telecommunications - Digital Transport of
One-Way Video Telephony Signals - Parameters for Objective Performance Assessment”
[13].  This standard specifies a framework for measuring end-to-end performance
parameters that are sensitive to distortions introduced by the coder, the digital channel, or
the decoder shown in Figure 3.

Performance measurement systems digitize the input and output video streams in
accordance with ITU-R Recommendation BT.601-4 [14] and extract features from these
digitized frames of video.  Features are quantities of information that are associated with
individual video frames.  They quantify fundamental perceptual attributes of the video
signal such as spatial and temporal detail.  Parameters are calculated using comparison
functions that operate on two parallel sequences of these feature samples (one sequence
from the output video frames and a corresponding sequence from the input video frames).
The ANSI standard contains parameters derived from three types of features that have
proven useful: (1) scalar features, where the information associated with a specified
video frame is represented by a scalar; (2) vector features, where the information
associated with a specified video frame is represented by a vector of related numbers; and
(3) matrix features, where the information associated with a specified video frame is
represented by a matrix of related numbers.

In general, the transmission and storage requirements for measuring an objective
parameter based on scalar features is less than that required for an objective parameter
based on vector features.  This, in turn, is less than that required for an objective
parameter based on matrix features.  Significantly, scalar-based parameters have
produced good correlations to subjective quality.  This demonstrates that the amount of
reference information that is required from the video input to perform meaningful quality
measurements is much less than the entire video frame.  This important new idea of

Video Compression,
Storage, or

Transmission System

Performance
Measurement

System

Video
Input

Video
Output

Performance
Measurement

System

Encoder Decoder

Digital
Channel

Extracted Features

Figure 3.  ANSI T1.801.03 reference model for measuring video performance.
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compressing the reference information for performing video quality measurements has
significant advantages, particularly for such applications as long-term maintenance and
monitoring of network performance.  Since a historical record of the output scalar
features requires very little storage, they may be efficiently archived for future reference.
Then, changes in the digital video system over time can be detected by simply comparing
these past historical records with current output feature values.

Further refinements in the art of compressing video quality information holds out the
promise of producing an “in-service” method for measuring video quality that will be
good enough to replace subjective experiments in many cases.  This extension would
make it possible to perform non-intrusive, in-service performance monitoring, which
would be useful for applications such as fault detection, automatic quality monitoring,
and dynamic optimization of limited network resources.

3.2.1 Example Features

This section presents examples from each of the three classes of features (scalar, vector,
matrix).  The first example to be presented is scalar features based on statistics of spatial
gradients in the vicinity of image pixels.  These spatial statistics are indicators of the
amount and type of spatial information, or edges, in the video scene.  The second
example is scalar features based on the statistics of temporal changes to the image pixels.
These temporal statistics are indicators of the amount and type of temporal information,
or motion, in the video scene from one frame to the next.  Spatial and temporal gradients
are useful because they produce measures of the amount of perceptual information, or
change in the video scene.  The third example is a vector feature that is based on the
radial averaged frequency content of a video scene.  Finally, several examples of matrix
features are presented, included the commonly used peak signal to noise ratio (PSNR).

3.2.1.1 Spatial Information (SI) Features

Figure 4 demonstrates the process used to extract spatial information (SI) features from a
sampled video frame.  Gradient or edge enhancement algorithms  (i.e., Sobel filters) are
applied to the video frame.  At each image pixel, two gradient operators are applied to
enhance both vertical differences (i.e., horizontal edges) and horizontal differences (i.e.,
vertical edges).  Thus, at each image pixel, one can obtain estimates of the magnitude and
direction of the spatial gradient (the right-hand image in Figure 4 shows magnitude only,
called SIr in ANSI T1.801.03).  A statistic is then calculated on a selected subregion of
the spatial gradient image to produce a scalar quantity.  Examples of useful scalar
features that can be computed from spatial gradient images include total root mean square
energy (this spatial information feature is denoted as SIrms in ANSI T1.801.03) , and total
energy that is of magnitude greater than rmin and within ∆θ radians of the horizontal and
vertical directions (denoted as HV(∆θ, rmin) in ANSI T1.801.03).  Parameters for
detecting and quantifying digital video impairments such as blurring, tiling, and edge
busyness are measured using time histories of SI features.
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3.2.1.2 Temporal Information (TI) Features

Figure 5 demonstrates the process used to extract temporal information (TI) features from
a video frame sampled at time n (i.e., frame n in the figure).  First, temporal gradients are
calculated for each image pixel by subtracting, pixel by pixel, frame n-1 (i.e., one frame
earlier in time) from frame n.  The right-hand image in Figure 5 shows the absolute
magnitude of the temporal gradient and, in this case, the larger temporal gradients (white
areas) are due to subject motion.  A statistical process, calculated on a selected subregion
of the temporal gradient image, is used to produce a scalar feature.  An example of a
useful scalar feature that can be computed from temporal gradient images is the total root
mean square energy (this temporal information feature is denoted as TIrms in ANSI
T1.801.03).  Parameters for detecting and quantifying digital video impairments such as
jerkiness, quantization noise, and error blocks are measured using time histories of
temporal information features.

3.2.1.3 Spatial Frequencies Feature

A vector feature can be computed from the Fourier transform of a square (N horizontal
pixels by N vertical lines) sub-region of the sampled video frame.  This vector feature,
denoted by

Edge

Enhancement

Figure 4.  Example spatial information features.

_ =
frame n frame n-1

Figure 5.  Example temporal information features.
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Added noise in the output produces extra high frequency content.  Blurring of the output
image produces missing high frequency content.  Unlike traditional multi-burst
measurements, this new frequency response measurement technique can measure
dynamic changes in system response as the input scene changes.

3.2.1.4 Example Matrix Features

The entire image can also be used as a reference feature.  One well known parameter that
is measured from the whole image feature is peak signal to noise ratio (PSNR).  PSNR is
computed from the error image which is obtained by subtracting the output image from
the input image (a standardized method of measurement for PSNR is given in ANSI
T1.801.03).  Other matrix features and parameters are possible.  The spatial information
(SI) image, illustrated in Figure 4, can also be used as a matrix feature.  Parameters based
on this matrix feature were first introduced in [15] and applied to a subjectively rated
data set in [16].

For the MPEG 1+ and MPEG 2 experiments, two SI-based matrix parameters were
included in the analysis.  These two parameters (Negsob, and Possob), are illustrated and
compared with PSNR in Figure 7.  The top left image is the input image, the top center
image is the spatially registered output image, and the top right image is the error
between the input and the output image (i.e., error = input - output).  In this case, zero
error has been scaled to be equal to mid-level gray (128 out of 255 for an 8 bit display).
The bottom left image is the spatial information of the input image (SIr[input]), the
bottom center is the spatial information of the output image (SIr[output]), and the bottom
right image is the error between the two spatial information images (i.e., SIr[error] =
SIr[input] - SIr[output]).  Once again, zero error has been scaled for mid-level gray.
When false edges are present in the output image (e.g., blocks, edge busyness, etc.), the
SI error is negative and appears darker than gray (Negsob parameter).  When edges are
missing in the output image (e.g., blurred), the SI error is positive and appears lighter
than gray (Possob parameter).  In this manner, the two types of error can be clearly
separated on a pixel-by-pixel basis when both are present in the output image.  Note that
the enhancement of image artifacts is much greater in the SI error image (bottom right)
than in the PSNR error image (top right).  It will be shown below that these SI distortion
metrics produce much higher correlations to subjective score than PSNR for the
subjectively rated MPEG data sets.

The ability to separate impairments on a pixel-by-pixel basis is one advantage of the SI
matrix equivalents over the SI scalar features.  Since SI scalar features use summary
statistics from the input and output SI images, impairments can be missed when two
impairments with opposite responses are present (for instance, missing edges and added
edges).  However, it is possible to design scalar features that can separate certain kinds of
impairments that have opposite responses (for instance, blocking can be separated from
blurring by looking at the direction of the spatial gradient, see Annex B, section B.3 of
ANSI T1.801.03).  The primary disadvantages of using matrix features is that they
require a tremendous amount of extra storage (or transmission bandwidth) and precise
spatial registration of the input and output images must be performed prior to the
parameter measurement.
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3.2.2 Producing Frame-by-Frame Objective Parameters Values from Features

Frame-by-frame parameter values can be computed by applying mathematical
comparison functions to each input and output feature value pair (the algorithms for
temporally aligning output and input images will be discussed below).  Useful
comparison functions include the log ratio (logarithm base 10 of the output feature value
divided by the input feature value), and the error ratio (input feature value minus output
feature value, all divided by the input feature value).  These frame-by-frame objective
parameter values give distortion measurements as a function of time.

3.2.3 Temporal Reduction of the Frame-by-Frame Parameter Values

Subjective tests conducted in accordance with CCIR Recommendation 500 [9] produce
one subjective mean opinion score (MOS) for each HRC-scene combination.  Since these
video clips are normally about 10 seconds in length, it is necessary to “time collapse” the
frame-by-frame objective parameter values before they are correlated to subjective MOS.
ANSI T1.801.03 specifies several useful time collapsing functions such as maximum,

    

    

Figure 7  Comparison of SI error with PSNR error

            Input            minus         Output            equals     PSNR Error

        SI (Input)          minus        SI (Output)       equals          SI Error
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minimum, and root mean square (rms).  The maximum and minimum are useful to catch
the extremes of video quality while the rms is a good indicator of the overall average.

3.3 Description of NTIA/ITS Video Processing System

A computer-controlled frame capture and storage system was used to sample and store
the video clips from the two MPEG studies.  The system block diagram is shown in
Figure 8.  Video is received on Betacam SP tape cassettes.  An HP workstation controls
both a Sony BVW-65 and a Truevision ATVista frame grabber installed in a PC.  For the
results in this paper, only the luminance channel from the Betacam SP deck was used.

The ITU-R Recommendation BT.601 A/D sampling rate of 13.5 MHz results in a frame
size of 720 x 486 pixels.  Each pixel is sampled using 8 bits giving 256 discrete levels of
luminance.  In order to avoid clipping the data, the A/D is adjusted to sample black
(normally 7.5 IRE) as 16 and white (normally 100 IRE) as 235.

Using the dynamic tracking and remote control capabilities of the BVW-65, NTSC fields
1 and 2 are grabbed and combined to produce an NTSC frame.  The NTSC frame is
stored in TIFF format on a video optical disc jukebox which allows storage of up to 1
hour of uncompressed video.

This data collection and storage system ensures the availability of each frame or field at
any timecode during the processing by the HP workstation.  The optical jukebox provides
random access to input and output frames, which enables the objective video quality
measurement system to implement matrix metrics (based on pixel by pixel comparisons
of entire frames), as well as scalar and vector metrics.

Video frame data

Betacam SP
Tape
Player

Frame
Capture

Card

Optical
Disc

Jukebox

Workstation

Control and Processing

Video quality features
and parameters .

Control  Signals

Analog Video
Tape

Analog Video

Luminance only

Digitized

Video

Figure 8  NTIA/ITS Video Processing System
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3.4 Calculation of Gain, Level Offset, and Active Video Shift

This section is included for the benefit of those seeking to implement the image
calibration procedures that were used in the current studies.  The reader may choose to
skip ahead to section 3.5 on page 24.

Calibration is an important issue whenever input and output video frames are being
directly compared.  Neglecting calibration can produce large measurement errors in the
parameter values.  For example, both non-unity channel gains and non-zero level offsets
can have a significant effect on the calculations of peak signal to noise ratio (PSNR) and
other parameters in the ANSI T1.801.03 standard.

ANSI T1.801.03-1996 specifies robust methods for measuring gain, level offset, and
active video shift (i.e., spatial registration of input and output video frames).  These
methods require the use of still video and in the case of the gain and level offset
calculations, that still video is a test pattern defined in the standard.  An alternative
method for performing these calibration measurements had to be devised for the MPEG
experiments because the ANSI calibration frames were not included on the source tapes.
This section presents an adaptation of the methods in ANSI T1.801.03 for calculating
gain, level offset, and active video shift using natural motion video.  The method has the
added advantage of being able to track dynamic changes in gain, level offset, and active
video shift.  The method has proven useful for channels that change their calibration
characteristics on a scene by scene basis (e.g., an MPEG channel that is re-tuned for each
scene to optimize quality).

3.4.1 Overview of Algorithm

The basic calibration algorithm is applied to a single field from the output video stream.
For each selected output field, the following quantities are computed:

1.  The closest matching field from the input video stream.

2.  The estimated gain and level offset between the output field and the closest matching
input field.

3.  The estimated active video shift (horizontal and vertical spatial shift) between the
output field and the closest matching input field.

The interdependence of the above listed quantities produces a “chicken or egg”
measurement problem.  Calculation of the closest matching input field requires that one
know the gain, level offset, and active video shift.  However, one cannot determine these
quantities until the closest matching input field is found.  If there are wide uncertainties
in the above three quantities, a full exhaustive search would require a tremendous number
of computations.  The approach taken here is to reach the solution using an iterative
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search algorithm.  For robustness, the basic calibration algorithm can be independently
applied to several output fields and the results averaged.

3.4.2 Description of Basic Calibration Algorithm for One NTSC Output Field

The basic calibration algorithm for one selected output field is described in this section.
The next section discusses how multiple applications of this basic calibration algorithm
can be used to track dynamic changes in the calibration quantities or to obtain robust
estimates of static calibration quantities.

3.4.2.1 Inputs to the Algorithm

The following is a list of quantities that must be pre-specified in order for the search
algorithm to work.  The initial search limits should be generous enough to include the
correct calibration point.  A priori knowledge of the transmission channel behavior may
be used to help define the initial search limits (e.g., minimum and maximum video delay
may be used to specify the range of input fields to search).

1.  om, the current output field on which to perform the calibration, sampled according to
ITU-R Recommendation BT.601 (horizontal extent: 0 to 719 pixels, vertical extent: 0
to 242 active video lines).  The image pixel at vertical and horizontal coordinates
(v=i, h=j) will be denoted by om(i, j), where (0,0) is the top-left pixel in the image.

2.  { iL, …, in, …, iU}, the range of contiguous input fields (lower, …, current, …, upper)
to examine for a match with output field om.

3.  ROI = {top, left, bottom, right}, the input field sub-region (region of interest) over
which to perform the comparison, left and right are in pixels, top and bottom are in
lines.  Note:  ROI may be a manually determined input to the calibration algorithm or
an appropriate ROI could be automatically calculated (see STEP 1 - Select the Region
of Interest).

4.  { hL, …, hs, …, hU}, the range of possible horizontal shifts (lower, …, current, …,
upper) of the output field in pixels, where a positive shift indicates that the output is
shifted to the right with respect to the input.

5.  { vL, …, vs, …, vU}, the range of possible vertical shifts (lower, …, current, …, upper)
of the output field in lines, where a positive shift indicates that the output is shifted
downward with respect to the input.

6.  g, an initial guess for the transmission channel gain as defined in ANSI T1.801.03
(nominally set to 1.0).

3.4.2.2 Comparison Function

Given the above definitions, a variance comparison function for comparing output field
om to input field in is defined as:
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and hs, vs, and g are some hypothesized horizontal shift, vertical shift, and gain of the
output field.  The point (in, hs, vs, and g) where the comparison function is minimized is
defined as the global calibration point for output field om.  Using the variance instead of
the mean square error for the comparison function has several advantages.  One
advantage is the reduction of time alignment errors resulting from changes in scene
brightness levels.  The variance comparison function is more likely to use true scene
motion for time alignment of the input and output images rather than changes in scene
lighting conditions or transmission channel level offset.  The variance comparison
function also eliminates the transmission channel level offset from the search, and allows
this calibration quantity to be directly computed after the other calibration quantities are
determined.

3.4.2.3 Algorithm Description

Figure 9 presents a flow diagram of the search algorithm that is used to find the desired
global calibration point for output field om.  The algorithm uses the following steps which
are applied as shown in the figure.
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STEP 1 - Select the Region of Interest (ROI)

The first step is to select a region of interest (ROI) upon which to base the comparison
function calculations.  This is an important step to assure that the comparison function is
minimized at the true global calibration point.  The ROI can be manually or automatically
selected depending upon the following important considerations:

1.  The ROI should be chosen such that it is contained within the active video area. 4

2.  The ROI should include both horizontal and vertical edges to assure proper spatial
registration of the input and output fields.  The spatial information (SI) features in
section 6.1.1.1 of ANSI T1.801.03 can be applied to the input sequence to determine
if horizontal and vertical edges are present.

                                                
4 The active video area is defined in section 5.3 of ANSI T1.801.03-1996 as that rectangular portion of the
input active video that is not blanked by the transmission service channel.  Technically, the active video
area cannot be calculated before the active video shift is known.  However, one can choose a conservative
ROI well within the estimated active video area.

Step 2a:  Coarse Spatial Alignment

Output Field om Temporal Uncertainty
{ iL, …, in, …, iU}

Vertical Uncertainty
{ vL, …, vs, …, vU}

Gain gHorizontal Uncertainty
{ hL, …, hs, …, hU}

Step 2b:  Coarse Temporal Alignment

Step 3a:  Spatial-Temporal Search

om g{ in-2, …, in, …, in+2} { vs-4, …, vs, …, vs+4} { hs-4, …, hs, …, hs+4}

Step 3b:  Termination Test

om g{ in} { vs} { hs}

1:  Select the ROI

ROI

ROI

ROI

Active Video Area

l

Figure 9  Calibration Algorithm Flow Diagram
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3.  The ROI should include both still and motion areas to assure proper temporal
registration of the input and output fields.  The temporal information (TI) features in
section 6.1.1.2 of ANSI T1.801.03 can be applied to the input sequence to determine
if motion and still areas are present.

4.  The size of the ROI should be carefully considered.  Input to output field comparisons
will be faster if a smaller ROI is selected.  Too small an ROI might miss important
alignment information while too large an ROI might create difficulties in temporal
registration for scenes that contain small amounts of motion.

5.  The ROI should contain only the valid scene area or that portion of the input scene
that contains picture.  For example, the ROI should be reduced for scenes that are in
the letterbox format.

6.  The ROI must be no larger than the intersection of the active video area (point 1
above) and the valid scene area (point 5 above), and must account for the horizontal
and vertical shift uncertainties (i.e., {hL to hU}, { vL to vU}).

STEP 2 - Coarse Spatial and Temporal Alignment

Since images are often oversampled from Nyquist both spatially and temporally, a coarse
spatial and temporal alignment search (i.e., a search that does not include every pixel and
field) can be used to effectively reduce the initial spatial and temporal uncertainties (i.e.,
{ hL, …, hs, …, hU},  { vL, …, vs, …, vU}, and {iL, …, in, …, iU}).  The coarse search
parameters are selected to be fine enough so that the search algorithm will not miss the
global calibration point (i.e., the point at which the comparison function is a global
minimum).  Coarse registration to within (and subsequent fine registration over) ±4
pixels, ±4 lines, and ±2 fields is sufficient to insure that the desired global calibration
point is achieved.5

For efficiency, the coarse spatial and temporal search is itself performed as a two step
process as follows:

a)  Coarse Spatial Alignment

Coarse spatial alignment of output field om is performed using the current best guess for
the matching input field.  The comparison function is computed for: output field om, input

                                                
5 The spatial search limits of ±4 pixels and lines are based on scenes with a moderate amount of motion.
To assure that the fine registration algorithms converge to the proper input field, these spatial search limits
should be chosen to include the maximum amount of motion between two sequential fields (i.e., field 1 and
the next field 2).  A temporal uncertainty of ±2 fields allows for the possibility of being off by one field of
the same type as the current field (for example, consider the case where om is an NTSC “field 1”, the
current in is an NTSC “field 1”, but the correct input time alignment is an NTSC “field 1” at time location
in-2).
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field in (current best guess) 6, horizontal shifts {hL, …, hs-4, hs, hs+4, …, hU}, vertical
shifts {vL, …, vs-4, vs, vs+4, …, vU}, and g equal to the current guess for the transmission
channel gain.  The horizontal and vertical shifts (hs and vs) are updated to that point
which minimizes the comparison function.  An updated estimate for the transmission gain
g is then computed using the calibration equations in section 5.1.2 of ANSI T1.801.03
and the updated spatial alignment.

b)  Coarse Temporal Alignment

Coarse temporal alignment of output field om is performed using the spatial alignment
and gain found in step 2a.  The comparison function is computed for: output field om,
input fields {iL, …, in-2, in, in+2, …, iU}, the updated horizontal shift hs from step 2a, the
updated vertical shift vs from step 2a, and the updated gain g from step 2a.  The best
matching input field in is updated to that field which minimizes the comparison function.
An updated estimate for the transmission gain g is then computed using the calibration
equations in section 5.1.2 of ANSI T1.801.03 and the updated input field.

STEP 3 - Fine Spatial and Temporal Alignment

Fine spatial and temporal alignment of output field om is performed using the coarse
calibration estimates and reduced uncertainties (±4 pixels, ±4 lines, ±2 fields) from step
2.  The fine search algorithm uses the comparison function to examine all possible spatial
and temporal shifts within the reduced uncertainties.  The fine search algorithm is applied
repeatedly until convergence is reached (i.e., in, hs, and vs remain the same from one
iteration to the next).

a)  Spatial-Temporal Search

The comparison function is computed for: output field om, input fields {in-2, in-1, in, in+1,
in+2}, horizontal shifts {hs-4, …, hs-1, hs, hs+1, …, hs+4}, vertical shifts {vs-4, …, vs-1,
vs, vs+1, …, vs+4}, and transmission channel gain g.  The horizontal and vertical shifts (hs

and vs) are updated to that point which minimizes the comparison function over the above
range of inputs.  An updated estimate for the transmission gain g is then computed using
the calibration equations in section 5.1.2 of ANSI T1.801.03 and the updated spatial-
temporal alignment.

b)  Termination Test

The values of in, hs, and vs at the end of step 3a are compared to their previous values at
the beginning of step 3a.  If there is any difference, then step 3a is repeated with the new
calibration values.  Otherwise, stop because the search algorithm has finished.  The level

                                                
6 Caution should be observed near a scene cut to assure that input field in is the same scene as the output
field om.  One could examine the input sequence for scene cuts using the techniques presented in [17, 18].
These techniques locate large changes, or spikes, in the temporal information (TI) sequences which are
indicative of scene cuts.
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offset l is then calculated using the current values of in, hs, vs, g, and the equations in
section 5.1.2 of ANSI T1.801.03-1996.

3.4.3 Multiple Application of the Basic Calibration Algorithm

The basic calibration algorithm shown in Figure 9 can be applied to more than one output
field. 7  The two primary reasons for doing this are to:

1. Compute more robust estimates of the calibration quantities for static (i.e., not time
varying) transmission systems.

2. Continuously update the calibration quantities for transmission systems that change
their behavior over time (e.g., the calibration changes from one scene to the next).

When the calibration quantities are static, the calibration algorithm can be applied to
multiple output fields om (m=1, 2, 3, …, M) and the results can be filtered to produce
robust estimates for the gain g, level offset l, horizontal shift hs, and vertical shift vs.  A
median filter is recommended for gain g and level offset l since the median is generally
more robust than the mean and not as sensitive to outliers.  A mean filter can be used for
the horizontal shift (hs) and the vertical shift (vs) if one desires to estimate sub-pixel or
sub-line shifts in the output image.  If nearest pixel or nearest line registration is desired,
a median filter should be used.

A digital video system may vary its contrast and color saturation levels over time.  This
might result from system drift or from scene dependent behavior of the digital coding
system.  Time varying changes in the calibration quantities can be tracked by repeated
application of the calibration algorithm.  If filtering of the calibration results is used to
produce smoothly varying time estimates for gain g, level offset l, horizontal shift hs, and
vertical shift vs, this filtering operation should not cross scene cut boundaries.

3.4.4 Calibration Test Results

The calibration algorithm described above was applied to field 1 and 2 of every 30th

output video frame (i.e., once per second per field type) from each of the HRCs on the
MPEG 1+ and MPEG 2 test tapes.  The following observations were noted:

1.  There were no significant differences between the calibration quantities for field 1
and field 2.

2.  Gain and level offset were not in general constant for an HRC but instead varied
dynamically from scene to scene and even within a scene.  Scene to scene gain
variations on the order of 30% were measured for some HRCs.  Smaller within scene
gain variations on the order of 10% were measured.  The gain and level offset did not
vary significantly for the cable simulation HRCs (i.e., SNRs of 34, 37, and 40 dB).

                                                
7 For the current MPEG studies, multiple application of the calibration algorithm was used for both of the
reasons cited here - see Calibration Test Results section.
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However, the VHS record and playback cycle HRC did exhibit dynamic changes
from scene to scene.  The exact reason for this behavior is not known.  It may be due
to some form of contrast enhancement being performing by the VCR.

3.  Some HRCs had active video shifts that varied from scene to scene (only the
horizontal shift contained this variability).  However, the active video shift remained
fixed throughout a given scene.  The reason for this variability is unknown but it may
be partly due to the tape editing process that was used to generate the viewing clips.8

4.  Temporal warping (i.e., variable video delay) of up to 3 video frames was observed
for two of the HRCs (MPEG 1 systems operating at 1.5 Mb/sec and 2.2 Mb/sec).
These two systems were also the only ones that dropped video frames.

5.  Spatial warping (a stretching of the video from right to left by about 28 horizontal
pixels) was found on one HRC (an MPEG 2 system operating at 3.0 Mb/sec) for
every scene.  It is unclear as to the cause of this impairment but a likely source might
be a faulty A/D or D/A clock on the codec.  For this HRC, the calibration algorithm
produced a horizontal shift estimate that wandered randomly around 14 horizontal
pixels (i.e., half of the horizontal stretch).

Table 1 gives a summary of the median filtered calibration quantities for 9 of the 10
MPEG systems that were included in the tests (the HRC that horizontally stretched the
video is not included in the table).  The median filtering was performed over all test
scenes for each HRC.  The analysis has revealed that it is quite common for digital video
systems to have substantial non-unity gains, level offsets, and horizontal and vertical
shifts of the output video.  In particular, note that active video shifts up to 8 horizontal
pixels and 9 vertical field lines (i.e., 18 vertical frame lines) were measured.

Table 1   Measured Calibration Quantities for MPEG Systems

MPEG System Gain, g Level Offset, l H shift, hs

(pixels)

V shift, vs

(field lines)

MPEG 1+

3.9 Mb/s

MPEG 1+ Test

.95 -0.2 0 -8

MPEG 1+

5.3 Mb/s

.96 -0.9 -7 -8

                                                
8 The reason tape editing is suspected for the time varying portion of the horizontal shift is because all
HRCs on the MPEG 2 tape (including the VHS and cable simulations) had scene to scene changes.  None
of the HRCs on the MPEG 1+ tape had dynamic changes to their horizontal shifts.
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MPEG 1+

8.3 Mb/s

.95 -1.4 3 -9

MPEG 1

1.5 Mb/s

1.17 8.3 -7 1

MPEG 1

2.2 Mb/s

1.17 7.7 -8 1

MPEG 1+

3.9 Mb/s

MPEG 2 Test

.90 -3.8 4 -8

MPEG 2

3.9 Mb/s

.98 2.6 -7 1

MPEG 2

5.3 Mb/s

.99 2.0 -7 1

MPEG 2

8.3 Mb/s

.99 2.2 -7 1

In light of the above observations, it was decided to compute a separate gain g, level
offset l, horizontal shift hs, and vertical shift vs for each clip (i.e., each HRC-scene
combination) by median filtering the calibration quantities for that clip.  Each frame of
the clip was then corrected using the median filtered calibration quantities for that clip
before any objective parameters were computed.  Note that within scene variations from
the calibration quantities are not removed by this approach.  These within scene
variations will thus be detected as impairments by the objective parameters.

3.5 Calculation of Processing Sub-region

For a given scene, the objective measurements were computed over the same video area
for each HRC.  This area was determined as follows.  First, the valid scene area was
determined (some scenes were letterbox format) as that portion of the input scene that
contained valid picture.  Next, the active video area of each HRC was determined
(keeping in mind that this active video area is referenced to the input according to ANSI
T1.801.03-1996, so that these calculations must remove the active video shift).  The
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processing sub-region was then determined by the intersection of all the HRC active
video areas with the valid scene area.  This method provided the largest image sub-region
that could be safely used for all the HRCs.

3.6 Temporal Alignment (i.e., Video Delay)

The output video frames must be temporally aligned, or registered, to the input video
frames before the objective parameters can be computed.  Temporal misalignment of the
input and output video streams results from accumulated video delays in the end-to-end
transmission circuit (e.g., coder, digital transmission channel, decoder).  There are two
fundamental methods that can be used to perform temporal alignment (these methods
were first introduced in [15]).  The first method, called constant alignment, gives one
time delay measurement for the entire output video stream.  The second method, called
variable alignment, gives a time delay measurement for each individual output video
frame.9  Objective parameters can be computed using either temporal alignment method.
When constant alignment is used, frame by frame distortion metrics measure errors
produced by both spatial impairments and repeated output frames.  With variable
alignment, frame by frame distortion metrics measure only those errors produced by
spatial impairments, and the error caused by repeated output frames is quantified
separately using variable frame delay statistics.  Figure 10 presents a pictorial
representation of this concept for a 10 frames per second (fps) transmission system.  The
solid lines give the input and output frame pairs for computation of objective parameters
for the constant alignment case while the dashed lines give these pairings for the variable
alignment case.

                                                
9 One variable alignment method is given by [19], where output frames are categorized as active (i.e.,
unique or different) or repeated (i.e., same as previous) and the video delays of only the active output
frames are estimated.
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Repeated
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Figure 10  Constant alignment vs variable alignment
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3.6.1 Constant Alignment (Constant Video Delay)

Section 6.4.1 of  ANSI T1.801.03-1996 provides one method for performing constant
alignment.  This method can temporally align the input and output video streams to a
resolution of 1/60 second or one NTSC field.  Spatial registration of the input and output
NTSC frames (an NTSC frame is composed of two interlaced fields) is used to determine
how the output video frame is shifted horizontally and vertically with respect to the input
video frame.  If a one field time shift is present in the output video (i.e., the vertical
spatial shift is an odd number of lines - see note in section 6.2 of ANSI T1.801.03), the
output NTSC video framing is shifted by one field.  Next, the temporal information (TI)
features are calculated for the input and output video streams.  These two TI feature
streams, computed at a rate of 30 samples per second, quantify the amount of motion in
the input and output video streams.  Cross correlation of the TI streams is then used to
produce an estimate of the constant alignment.

Figure 11 presents a method for directly computing input and output TI feature streams at
a rate of 60 times per second (this method was first introduced in [6]).  An advantage of
using this method is that spatial registration is not required in order to achieve an
accuracy of 1/60 of a second or one NTSC field.  In Figure 11, TI is computed separately
for each NTSC field type (field 1, field 2) and the results are interleaved to produce a 60
Hz sampling.  The standard alignment algorithms given in section 6.4.1 of ANSI
T1.801.03 are then used to temporally align the input and output TI streams.

Video Stream

TI Feature Stream

Field 1 Field 2 Field 1 Field 2 Field 1 Field 2

Compute
Field 1

TI

Compute
Field 2

TI

Compute
Field 1

TI

Compute
Field 2

TI

Compute
Field 1

TI

Compute
Field 2

TI

Figure 11  Interleaved fields method for calculating TI
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3.6.2 Variable Alignment (Variable Video Delay)

The ITS video quality software is capable of performing variable alignment on each and
every output video field.  This is accomplished by the use of a minimum MSE matching
algorithm to find the best matching input field for every output field.  Variable alignment
comparisons are based upon NTSC fields rather than frames because an output frame can
be composed of two non-sequential input fields.  This is illustrated by output frame 3 in
Figure 12.  The variable alignment results for each field are computed only once and
stored for later reference.

3.6.3 Temporal Alignment Test Results

For high quality NTSC transmission systems like MPEG, the constant alignment method
presented in Figure 11 has proven to be an excellent and simple technique for measuring
video delay. 10  It has the added advantage of being an “in-service” method of
measurement for video delay.  For transmission systems that repeat frames, drop frames,
or perform temporal warping, this alignment method produces a temporal alignment that
reflects the average alignment of the ensemble of output video frames being examined.
For the current studies, this alignment technique was chosen as the one to use for
computation of the objective parameters.

It was observed that PSNR computed with constant alignment tended to over-penalize the
two HRCs with temporal warping and dropped frames.  Thus, the use of variable
alignment was examined for computation of the matrix objective parameters (i.e., PSNR,
Negsob, Possob), since it was thought that precise temporal alignment of input and

                                                
10 In this case, high quality refers to the temporal aspects of the video (i.e., systems that rarely drop frames)
and includes analog video transmission systems as well as high bit-rate digital video systems.
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Figure 12  An example of why field comparisons are used for variable alignment
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output fields might improve their correlations to subjective score.  However, for all three
matrix metrics, variable alignment produced objective parameter values with a poorer
correlation to subjective score then constant alignment.  One possible reason for this
behavior seemed to be that variable alignment removed all penalties for temporal
warping and dropped frames.

The variable alignment techniques were not able to compute reliable output to input
frame matching for the HRC which horizontally stretched the video (an MPEG 2 system
operating at 3.0 Mb/sec).  However, the constant alignment techniques presented here
and in ANSI T1.801.03 were able to determine the correct video delay.  The TI motion
computations used for constant alignment are robust with respect to changes in spatial
scaling while the output to input frame matching computations based on mean square
error (MSE) are not.

3.7 Summary of Objective Parameters for the MPEG 1+ and MPEG 2 Tests

This section presents a tabular summary of the objective parameters that were computed
for each HRC-scene combination in the MPEG 1+ and MPEG 2 studies.

Parameter Method of Measurement

711 Section 7.1.1 of ANSI T1.801.03

(maximum added motion energy)

712 Section 7.1.2 of ANSI T1.801.03

(maximum lost motion energy)

713 Section 7.1.3 of ANSI T1.801.03

(average motion energy difference)

714 Section 7.1.4 of ANSI T1.801.03

(average lost motion energy with noise removed)

715 Section 7.1.5 of ANSI T1.801.03

(percent repeated frames)

716 Section 7.1.6 of ANSI T1.801.03

(maximum added edge energy)
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717 Section 7.1.7 of ANSI T1.801.03

(maximum lost edge energy)

718 Section 7.1.8 of ANSI T1.801.03

(average edge energy difference)

719 Section 7.1.9 of ANSI T1.801.03

(maximum HV to non-HV edge energy difference)

719_60 Section 7.1.9 using an rmin of 60 instead of 20

(maximum HV to non-HV edge energy difference, threshold=60)

719a Section 7.1.9 using feature comparison function in section 6.5.1.5

(minimum HV to non-HV edge energy difference)

719a_60 Section 7.1.9 using an rmin of 60 instead of 20 and the

feature comparison function in section 6.5.1.5

 (minimum HV to non-HV edge energy difference, threshold=60)

7110 Section 7.1.10 of ANSI T1.801.03

(added edge energy frequencies)

7110a Section 7.1.10 using modified feature comparison function to sum

the missing frequencies (i.e., sum positive part instead of negative part)

(missing edge energy frequencies)

721 Section 7.2.1 of ANSI T1.801.03

(maximum added spatial frequencies)

722 Section 7.2.2 of ANSI T1.801.03

(maximum lost spatial frequencies)
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732 Section 7.3.2 of ANSI T1.801.03

(minimum peak signal to noise ratio)

733 Section 7.3.3 of ANSI T1.801.03

(average peak signal to noise ratio)

Negsob Mean of the negative part of the input minus output pixel by pixel

differences of SIr values (see section 6.1.1.1 of ANSI T1.801.03),

mean [Sobel(input)-Sobel(output)]np ([X] np defined in section 6.5.1.9)

(negative Sobel difference)

Possob Mean of the positive part of the input minus output pixel by pixel

differences of SIr values (see section 6.1.1.1 of ANSI T1.801.03),

mean [Sobel(input)-Sobel(output)]pp ([X] pp defined in section 6.5.1.7)

(positive Sobel difference)

Notes:

1.  The “HV to non-HV edge energy difference parameters” were computed using an rmin

threshold of 60 in addition to the recommended rmin threshold of 20.  It was observed
that an rmin threshold of 20 included nearly every pixel in the sampled video frames
due to the amount of noise which was present in the source video.

2.  The “added edge energy frequencies” and “missing edge energy frequencies”
parameters were actually computed using a mean calculation rather than a sum
calculation in the comparison function in section 6.5.1.9 to remove the effect of scene
length.

4. Subjective Data

4.1 Methods Used to Collect Subjective Data

The method used to collect subjective data was a variant of the method used in the 1994
T1A1.5 multi-lab study [20, 21]:  Recorded video segments were played back to human
observers on a single high-quality monitor in a room with controlled illumination.  The
video segments were presented in pairs, so that each judgment was a comparison of two
video treatments.  The observers made subjective judgments and recorded them on
answer sheets.

The method for collecting subjective judgments of video quality also differed from the
method used in the 1994 T1A1.5 study (see [2], for rationale and details).  Three main
differences were



31

-  HRCs were compared to each other, not to the original, unprocessed clip.  For a
given number of “trials” (exposures to stimuli), this method provides a larger
number of exposures to the HRCs being tested.  Rather than the original being
presented, say, 80 times while all other HRCs are presented eight times, as in
the “standard” method, in the current method the original is presented eight
times as a comparison and the other 72 exposures are equally spread among the
other HRCs.

-  The judgment that observers made was different from the “standard” method.
Rather than rating on a five-point “impairment” scale, observers (a) chose the
better HRC in each pair, then (b) estimated the difference between the value of
the two HRCs in dollars per month.  This method does correlate highly with
the impairment scale method, but also provides other technical advantages (see
[2]).

-  The video clips were recorded and played back on a video disc, rather than on a
Betacam SP tape recorder.  The performance specs for the video disc machine
are marginally poorer than for the tape machine (>45 dB video S/N, 450 pixels
horizontal resolution).  The video disc has the advantages of random access
and computer control.  The ordering of stimuli was separately randomized for
each subject in real time.  Also, the pairings of HRCs and scenes were
randomized; over the course of the full experiment, each HRC was paired with
each scene approximately an equal number of times, but on any specific trial
the scene was selected randomly.  This sampling procedure is based on the
logic that the HRCs we are testing are known, fixed, and limited in number,
while the scenes are sampled from a potentially infinite pool.

In the MPEG 1+ study 30 observers provided data in the dollar-rating task.  The
observers were not labs employees.  They were chosen to be cable TV customers,
familiar with the signal quality of cable TV, and also familiar with paying for TV.  Their
demographics were unremarkable.  The MPEG 2 study also used a sample of 30
consumers with the same overall description as the MPEG 1+ study.  Some of the same
people participated in both studies, but the studies were separated by nearly a year, more
than enough time for people to forget fine details of visual stimuli.

4.2 Summary of Subjective Data

The basic subjective data are the mean dollar ratings for each HRC-scene combination,
averaged across 30 observers.  Each rating represents the average difference between a
given HRC and the other HRCs with which it was compared.  Table 2 shows the mean
ratings for the MPEG 1+ study and Table 3 shows the mean ratings for the MPEG 2
study.  The standard errors of the values in Table 2 are on the order of 0.7, and in Table 3
the standard errors are on the order of 1 (there being half as many trials per subject as in
the MPEG 1+ study).

Other papers have presented analyses of these subjective data in some detail [1, 2].  In
both data sets the ratings are statistically related to the variables:  HRC, Scene, and the
specific HRC-Scene combinations.  This is what one would expect, and the subjective
data are in accord with expectations.  Other analyses demonstrate that the subjective data
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are not excessively noisy and show systematic differences between the way observers
react to analog vs. digital HRCs.  We do not present further analyses of the subjective
data by themselves here.  Instead, we concentrate on analyses of the objective data as
predictors of the subjective data.

Table 2  Mean subjective ratings of HRC-scene combinations, MPEG 1+ study

Scene 1.5
Mb/s

2.2
Mb/s

3.9
Mb/s

5.3
Mb/s

8.3
Mb/s

34 dB 37 dB 40 dB VHS Original

2001  0.86 -0.57  2.79 1.33 2.53 -7.92 -3.93 -2.12  2.35  3.85

Graduate -4.37 -6.06  0.84 0.22 1.97 -7.88 -4.98 -1.39 -0.11  3.09

Godfather  0.46 -0.19  0.80 1.70 2.18 -8.44 -2.22 -3.34  1.79  4.04

Being There  1.23  0.68  2.29 2.36 2.97 -9.14 -4.76 -0.65  1.81  2.91

Basketball -4.26 -1.04  0.31 2.46 3.50 -6.84 -1.88  0.47  2.71  3.17

Baseball -2.37 -0.41  3.56 2.30 2.00 -8.05 -5.57 -3.15  5.21  4.38

Hockey 1 -5.65 -5.53 -0.29 0.89 2.52 -3.94  1.97  2.39  3.79  4.16

Hockey 2 -4.61 -3.92  2.39 2.11 0.58 -5.12 -0.36  2.75  2.74  3.94

Table 3  Mean subjective ratings of HRC-scene combinations, MPEG 2 study

Scene 3.0
Mb/s

3.9
Mb/s

1+

3.9
Mb/s

5.3
Mb/s

8.3
Mb/s

34 dB 37 dB 40 dB VHS Original

2001  3.40  1.17 2.57 3.29 2.56 -10.47 -6.29  0.24 2.00 2.90

Graduate -0.13  1.68 1.11 1.94 1.16 -10.09 -4.78 -2.65 0.23 3.38

Godfather  0.20 -0.72 2.80 3.17 1.13  -9.45 -6.75 -4.50 3.54 3.26

Being There  2.00  1.64 3.70 1.89 3.95  -9.50 -5.43 -2.13 1.30 2.35

Basketball  0.15 -0.68 0.22 1.36 3.42  -6.33 -2.73 -0.60 5.40 3.60

Baseball -1.00  3.35 1.44 2.50 4.20  -7.29 -6.69 -1.37 4.20 4.22

Hockey 1  2.38 -0.13 0.23 1.69 3.85  -6.06 -4.06 -0.10 1.36 2.38

Hockey 2 -0.24 -3.60 3.69 0.86 3.17  -8.89 -1.91 -0.26 1.25 4.15

5. Statistical Analyses

5.1 Methods

5.1.1 Strategy

The theoretical goals of the analysis are to
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-  Find the “best” set of objective measures for predicting the subjective
judgments, and

-  Determine how close to optimal these predictors are.

Two features of most data sets complicate the problem of finding the "best" set of
predictors and force one to use compensating data analysis strategies.  The complicating
features of data are (a) noise, and (b) redundancy.  Two consequences of noise are (a)
that a different set of predictors will best fit in different, but comparable, data sets, and
(b) the best fit will never be 1.0.  Two consequences of redundancy in a set of variables
are (a) different subsets of variables will fit a data set (essentially) equally well, and (b) if
too many redundant variables are used as predictors, results can be very unstable from
one analysis to the next, especially in the presence of noise.

Because of the realities of data,

-  The actual goals of the analysis are to find a generalizable and meaningful set
of predictor measures;

-  Several sets of predictors may be essentially equally good; and

-  The fit of these good sets of predictors will be less than 1.0.

Strategies for dealing with data with noise and redundancy are:

-  Measure the redundancy in the set of predictor variables;

-  On the basis of the measure of redundancy, pre-specify the maximum number
of variables to be used in any analysis;

-  Use variables that are known a priori to be causally related to the dependent
variable whenever possible;

-  Verify that a candidate set of predictor variables generalizes to another data set
or sample.

5.1.2 Redundancy

The set of 20 objective measures are based on a few fundamental quantities such as
spatial and temporal differences in pixel brightness.  The measures fall into families of
closely-related measures (see above).  A statistical measure of the amount of redundancy
in the set of 20 measures is the number of orthogonal (i.e., uncorrelated) variables needed
to account for most of the variance in the set of measures.  The analysis that computes
this measure is “principal components analysis.”  Generally, one considers the number of
principal components for a data set to be the number whose eigenvalues are greater than
1.0.  In practice, an analysis is considered successful if it accounts for about 70% or 80%
of the variance in a set of measures with a number of components equal to about a third
or fourth the number of original variables.
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5.1.3 Reliability

The reliability issue is important because it limits the statistical fit of even a perfect
objective measure (see  [22, 23]).  That is, if the subjective judgments have noise in them
(as we know they certainly will), then even perfect objective measures will not be able to
predict the subjective judgments perfectly.  The definition of reliability of a variable is:
The ratio {the variance in the variable if it were measured perfectly} / {the variance in
the variable if it were measured perfectly, plus error}.  This definition is theoretical
because one never observes "the variance in the variable if it were measured perfectly."
However, one can still estimate the ratio using observable quantities, as follows (see
[23]).

-  The denominator is just the variance in the variable as actually observed:  This
variance is, by hypothesis, composed of both the true value and error.  The
estimator for the denominator is the mean square (variance) pooled across the
two subsamples, i.e., the MPEG 1+ and MPEG 2 studies.

-  The numerator is estimated by the covariance of the observed variable across
the two studies.  This simple estimator is based on the assumption that the error
in the two studies is independent and uncorrelated with the variable itself.  In
this case, the covariance of the observed variable with itself is the same as the
variance of the variable if it were measured perfectly.

We used the method of analyzing repeated measurements to compute estimates of the
statistical reliability11 of the objective measures and of the subjective measure.  Five of
the HRCs and all eight of the scenes were nominally the same across the two
experiments.  The repeated HRCs were MPEG1+ at 3.9 Mb/s, the cable simulations at
34, 37, and 40 dB S/N, and VHS.  We say “nominally the same” because the two tapes of
the HRCs and scenes were not identical frame-by-frame and pixel-by-pixel.  In this
sense, when we speak of a measurement in the present study we refer to the end-to-end
process of obtaining the video signal and preparing it for measurement (compare Figure 1
with Figure 2), as well as the digitizing and computing (Figure 8).

5.1.4 Regression

We use a standard regression program found in the SAS statistical software package for
most of the analyses in which we use the objective measures to predict the subjective
judgments.  We also use a “stepwise” regression as a secondary analysis.  Stepwise
regression is an exploratory data analysis technique that looks for a best-fitting set of
predictor variables via a mechanical algorithm.  Stepwise is an exploratory technique in
the sense that it can suggest hypotheses on the basis of one data set for testing in another
data set.  (The “best” set of variables stepwise regression finds is rarely the set that is
most generalizable.)

                                                
11 The term “reliability” is somewhat misleading when applied to objective measures of video quality.  If a
measure receives a low reliability score, one might think of the measure as defective, while in fact the
measure may be accurately responding to real differences in the video streams between the two studies.
Despite this incorrect connotation, the term “reliability” is the one that the statistics literature recognizes.
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5.2 Results

5.2.1 Redundancy in objective measures

MPEG 1+ data set alone.  The 20 objective measures, applied to the MPEG 1+ data set of
72 HRC-scene pairs, yielded four “factors” in a principal components analysis.  The four
factors accounted for 81% of the variance in the 20 measures.  The factors are described:

1.  The first component accounted for 33% of the variance in the data.  The four
measures with the largest correlation were 719 and 719_60 (two measures of
edge energy difference), 721 (a measure of added spatial frequency), and
Negsob (a measure of the difference between the Sobel transforms of the
original and processed images).

2.  The second principal component accounted for 28% of the variance, and the
pattern of correlations was complementary to that of the first principal
component (high where the first was low, and vice versa).  The three measures
with the largest correlations were 712 (lost motion), 722 (lost spatial
frequency), and Possob (a second, complementary measure based on
differences in Sobel images).

3.  The third principal component accounted for 13% of the variance.  The four
measures that correlated highest with this component were 7110a (added edge
energy), 713, 714, and 715 (types of motion difference, including repeated
frames).

4.  The fourth component accounted for 6% of the variance.  It correlated highest
with 7110 and 713 (types of motion difference).

MPEG 2 data set alone.  The MPEG 2 data set also yielded four principal components
with eigenvalues greater than 1.0; the four accounted for 83% of the variance in the data.
Descriptions:

1.  The first component accounted for 44% of the variance in the data set.  It
correlated equally well with six of the measures: the suite of four 719 variants
(edge energy difference), 721 (added spatial frequency), and Negsob
(difference in Sobel images).  This principal component is very similar to the
first principal component of the MPEG 1+ data set.

2.  The second component accounted for 21% of the variance.  Its four highest
correlations were with measures 717 (lost edge energy), 732 and 733 (peak
signal to noise ratio), and Possob (the other measure of differences in Sobel
images).  Again, the second component is similar across the two data sets.

3.  The third principal component accounted for 9% of the variance.  It correlated
most highly with measures 7110 (added edge energy) and 713 (motion
difference).  This principal component is similar to the fourth component of the
MPEG 1+ data.



36

4.  The fourth principal component accounted for 8% of the variance.  It
correlated most highly with the measures 7110a (another measure of added
edge energy) and 714 (another measure of motion difference).  This principal
component corresponds to the third component of the MPEG 1+ data.

Thus, the MPEG 2 data set replicates the pattern of results from the MPEG 1+ data set
quite well.  The total amount of redundancy in the measures was very similar, and the
pattern of redundancy was similar across the two sets of HRCs.

MPEG 1+ and MPEG 2 data sets together.  A principal components analysis of the two
data sets together revealed a similar pattern of results (as one might expect).  Four
principal components had eigenvalues greater than 1.0, and jointly accounted for 80% of
the variance.  Descriptions of the components:

1.  The first component, as in the two data sets separately, correlated highest with
measures from the 719 series, 721, and Negsob.  It accounted for 34% of the
variance.

2.  The second component, again similar to the second component for the two
data sets separately, accounted for 26% of the variance and correlated most
highly with measures 717, 722, and Possob.

3.  The third component accounted for 12% of the variance and correlated highest
with the added edge energy (7110a) and motion difference measures (714,
715).

4.  The fourth component, accounting for 7% of the variance, correlated highest
by far with measure 7110 (added edge energy; 7110 and 7110a are slightly
negatively correlated with each other).

5.2.2 Reliability of objective and subjective variables

Table 4 shows the results of the reliability analyses.  The R2 values each represent the
covariance of a variable with respect to itself across the two studies, divided by the
variance of the variable (i.e., mean square) pooled across the two studies (see [23]).  Each
reliability was computed from 80 data points (eight scenes by five HRCs in each of the
two data sets).  In the case of the subjective ratings, each of the 80 data points is the mean
of the ratings of 30 consumers.

Table 4  Reliability of objective and subjective measures of video quality across two
studies, proportion of variance accounted for

Measure Reliability

711 0.995
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7110 0.769

7110a 0.921

712 0.952

713 0.995

714 0.793

715 No variation

716 0.934

717 0.910

718 0.922

719 0.994

719a 0.982

719_60 0.989

719a_60 0.990

721 0.979

722 0.945

732 0.942

733 0.956

Possob 0.981

Negsob 0.982

Subjective ratings 0.890

Note that the reliability of the subjective ratings here is apparently somewhat higher than
that reported for the three-lab T1A1.5 study [20].  We say “apparently” because the
designs of the two studies were quite different.  In the T1A1.5 study there were very few
repeated trials, and these trials were not distributed in a way that promoted averaging
across subjects.  Therefore, the T1A1.5 reliability of 0.84 for subjective judgments may
have been artificially low because it was based on data for individual subjects.

Comparing  Figure 1 with Figure 2, one can see that differences in the MPEG 1+ and
MPEG 2 objective measurement paths included differences in manufacturer’s equipment,
differences in transcoding, and differences in tape generation.  With each tape generation
and transcoding, SNR and frequency response decrease slightly (frequency responses are
concatenated, and hence multiplied to find the total response).  Some of the objective
parameters (i.e., 714, 717, and 7110) seem to be more sensitive to these analog
processing differences than others.
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5.2.3 Regression

Any one regression run, on any one data set, is unlikely to produce a generalizable result.
However, multiple runs on multiple data sets that produce similar answers form the basis
for credible and potentially generalizable results.  The following analyses form a
sequence in which the details do not generalize from analysis to analysis, but the general
pattern of results does generalize.

MPEG 1+ alone using measures from principal components analysis.  The principal
components analysis showed that the data do not support more than four orthogonal
variables.  This fact does not absolutely require that the regression use four or fewer
variables.  However, practical experience shows that fewer rather than more variables
actually generalize to other data sets.  Therefore we used only a single variable from each
of the four principal components that passed the eigenvalue test.

These variables were the measures 7110 (added motion energy), 713 (average motion
difference), 719_60 (edge energy difference), and 722 (lost spatial frequency).  The
adjusted R2 for this regression was 0.586.  By comparison, the R2 for the best model in
the T1A1.5 three-lab study, using comparably averaged subjective data, was 0.706.  Also,
two of the four variables were not significant, viz., 7110 and 722.  Variables only from
the first and third principal components were significant as predictors of the subjective
ratings.  Thus, we might hope that we could do better with the MPEG data than we did
just using variables from the principal components analysis.

MPEG 1+ alone, using Sobel image measures.  The first two principal components of
both data sets correlate nearly maximally with the two Sobel image measures.  Because
these measure are of a priori interest, we ran a regression using the Sobel measures as the
representatives of the first two components.  The remaining two measures were 713 and
7110.  The adjusted R2 for this regression was 0.689, quite a bit better.  The most
interesting outcome of this regression was that the Sobel measure Negsob was by far the
most important variable.  Again, the variable 713 from the third principal component was
a significant predictor, and neither of the variables from the second and fourth principal
components were significant (i.e., Possob and 7110, respectively).

MPEG 1+ alone, exploratory stepwise analysis.  Stepwise regression enters variables
sequentially, choosing the next variable that maximizes R2 given the preceding variables.
Typically, results of a stepwise analysis are sensitive to noise in the data, so are not to be
trusted in isolation.  However, when used in combination with other analyses, stepwise
can be informative.  In the present data set, the order of entry of significant predictors
was: Negsob, 713, and 717.  Negsob and 713 were significant predictors in the preceding
analyses.  The measure 717 (lost edge energy) is highly correlated with the other
candidate measures from the second principal component (722 and Possob) that turned
out not to be significant for this data set.  The R2 for this three-variable model was 0.737,
which is respectable by comparison with the T1A1.5 results.
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From the analyses of the MPEG 1+ data set, we can take forward the hypotheses (a) that
a variable from each of the first three principal components of the objective data set is
worth trying; (b) the most likely variable from the first principal component is Negsob;
(c) an R2 above 0.7 is achievable.

MPEG 2 alone using measures from principal components analysis.  As in the case of the
MPEG 1+ data set, results of the principal components analysis suggested four or fewer
measures should be used in the regression analysis.  The measures that best fit the first
four components, respectively, were 719a_60 (edge energy difference), 717 (lost edge
energy), 7110 (added edge energy), and 714 (lost motion).  The adjusted R2 for the
regression with these variables was a respectable 0.718.  However, variable 7110 was not
significant as a predictor (as was true of the MPEG 1+ data set).

MPEG 2 alone using best MPEG 1+ measures.  A set of candidate "best" predictors from
the MPEG 1+ analysis was Negsob, 713 (motion difference), and 717.  The adjusted R2

fit of this model to the MPEG2 data was 0.815, quite an improvement over the variables
derived from the principal components, and also an improvement over the T1A1.5 multi-
lab data set.  However, even with this good fit, both 713 and 717 were only marginally
significant, suggesting that an even better fit might be possible.

MPEG 2 alone, exploratory stepwise analysis.  The order of entry of three clearly
significant variables was Negsob, Possob, 714 and 711; 711 was marginally significant.
The adjusted R2 for this model was 0.849, another improvement.  Again, Negsob was by
far the most important variable, achieving a fit of 0.774 by itself.

The three hypotheses from the MPEG 1+ data set were supported in this data set.
(Principal components three and four in the MPEG2 data set need to be switched for the
first hypothesis to be exactly true.)  We take these hypotheses into the analysis of the
joint data set.

MPEG 1+ & 2 using measures from principal components.  The measures that best
correlated with the first four principal components, respectively, of the combined data set
were Negsob, 722 (lost spatial frequency), 714 (lost motion), and 7110 (added edge
energy).  The adjusted R2 for this set of predictors was 0.704.  The variables 7110 and
722 were not significant, as was the case in the analysis of the MPEG1 data set.  Again,
Negsob had by far the largest effect.

MPEG 1+ & 2 using variables from MPEG 2 analyses.  A slightly different set of
variables had been identified in the analysis of the MPEG2 data, namely, Negsob and
714, as above, as well as Possob and 711.  The adjusted R2 for this set of variables was a
more respectable 0.769, and all variables were significant (Possob marginally).
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MPEG 1+ & 2 using stepwise.  The first three variables to enter the equation, and the
only three that appreciably improved the fit of the model, were Negsob, 711, and 714,
respectively.  (Possob was marginal).  The adjusted fit of the three-variable model was
0.763.

Peak signal to noise ratio.  PSNR has been used as a measure of video quality for years.
We report its ability to predict subjective judgments in the present joint data set:  R2 =
0.181 for average PSNR (parameter 733) ; R2 = 0.095 for minimum peak SNR (parameter
732).  By contrast, the R2 for Negsob for the joint data set was 0.657.

5.3 Interpretation of results

5.3.1 Which measures work best

For the current data sets, the best single predictor of subjective video quality is Negsob
(the mean of the negative portion of the differences in pairs of Sobel images).  Recall that
Negsob becomes large in absolute value when the coded video has false edges added to
it, as in blocking.  This variable is both consistent across data sets and powerful in its
ability to predict.

After Negsob, the ability to predict increases with the addition of another two or three
variables.  Exactly which ones are picked is not terribly crucial as long as representatives
from the following families of measures are included:

-  Possob or the family of measures of lost edge information (717 for lost edge
energy, or 722 for lost spatial frequency, a measure of edge sharpness).

-  714 or the family of measures of lost motion (713 for average motion difference
or 715 for repeated frames).

-  711 or measures of motion difference (713) or measures of edge energy
difference (the 719 family).

The inclusion of matrix versions of spatial information (SI) distortion (i.e., Negsob,
Possob) increased the amount of subjective variance that was explained by the objective
metrics by about 5 to 8 percent.  Thus, for the current studies, the price paid for
compressing the SI information into a set of scalar quality features appears to be about a
5 to 8 percent reduction in prediction efficiency.

The particular package of measures that predicts subjective judgments best may depend
somewhat on the particular domain of HRCs and scenes for which one wants to make
predictions.  For example,

-  If one is interested in comparing only MPEG HRCs running at different bit
rates, then one package of measures could be slightly better, while if one were
comparing MPEG to VHS and cable, then another package might predict
slightly better.
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-  If one were interested in determining acceptable bit rates for one kind of
content (e.g., sports), then one package of measures might be slightly better,
but if one were interested in another kind of content (e.g., news and weather)
then another package of measures might be slightly better.

5.3.2 Comparison to results of  T1A1.5 multi-lab study

The T1A1.5 multi-lab study [20] used objective measures of video quality to predict
subjective judgments.  How do the results of the two studies compare?  The answer is:
The results of the two studies generally agree with each other, but the studies differed
enough that it is difficult to say precisely how well the results agreed.  We consider three
areas of possible agreement between the two studies, (a) how well objective parameters
predicted subjective judgments, (b) which objective parameters predicted best, and (c)
the array of HRCs and scenes used in the two studies.

(A)  How well.  The degree of statistical fit was very similar in the two sets of studies, as
described in Section 5.2.3.  The statistical fit in the current study was somewhat better.

(B)  Which parameters.  In the T1A1.5 study, the best-fitting group of objective
parameters were identified as P6, P9, and P13.  P6 was a measure of lost motion,
somewhat comparable to the measure called 714 in the current study.  P9 was a measure
of change in edge energy; several measures in the current study were related to changes
in edge energy, including Negsob and the 719 family.  P13 was a measure of change in
spatial frequency, which is related to the 721 measure in the current studies.  The
measures 714, 719, and 721 were good predictors, and models involving sets of multiple
parameters usually included something like them.

However, the T1A1.5 study had no measures comparable to the Negsob and Possob
measures in the current study.  (The reason is that computing these measures requires
massive data storage that became available to us only recently).  Negsob in particular is
highly correlated with both the 719 family of measures and with 721.  And, Negsob is
more highly correlated with the subjective judgments than any other objective measure
we tried.  In the regression models Negsob assumes primary importance.  Therefore, two
of the measures that correspond most nearly with those from the previous study are
essentially subsumed by Negsob and are pre-empted by Negsob from appearing in their
own right.  Qualitatively, though, the results of the T1A1.5 study and the current studies
are quite similar.

(C)  HRCs and scenes.  The current studies were designed to be complementary to the
T1A1.5 multi-lab study.  The HRCs used here fit into the gap in the T1A1.5 study
between 1.5 and 45 Mb/s, and the scenes were chosen to be appropriate for the HRCs.
However, the studies differ in two very important ways.

 - One is that the current study did not include the great variety and severity of
impairments present in the T1A1.5 study.  In the current study even the least
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powerful HRCs were nearly able to handle the video material.  By contrast, in
the T1A1.5 study there were many glaring mismatches between low bit rate
HRCs and the video material they were asked to handle.  The various objective
measures are designed to be sensitive to particular artifacts and impairments.
Since the present study and the previous study differ in terms of the number
and severity of impairments, one would expect differences between the two
studies in the sorts of objective measures that performed well.

- The second major difference between the studies is in the range of variables,
which affects the fit of regression models generally.  Since the T1A1.5 study
covered a great range of HRCs, bit rates, and video material coding difficulty,
it also covered a great range in both objective and subjective measures of video
quality.  The present study probably covered a smaller range of variables
(although it is difficult to be certain because the measures were not identical).
Larger ranges of variables lead to better statistical fits of regression models,
other things being equal.  Therefore, the fit of objective to subjective data
should have been better in the T1A1.5 study (other things being equal).  The
fact that the objective measures predicted the subjective measures better in the
current study is impressive, given the smaller range of variables.

5.3.3 How good the statistical fit really is

In the combined data set the objective measures were able to account for 0.763 to 0.769
of the variance, depending on whether one used three or four predictor variables.  By way
of comparison, recall that in the large T1A1.5 study ([20], pg. 28), the fit was not quite as
good:  R2=0.706.

Another comparison that is relevant is with the maximum R2 that could have been
achieved, given the level of error in the data.  More than a quarter century ago the
statistician Cochran dealt with the problem of estimating R2 in the presence of error
([23], pg. 22): “This paper deals mainly with the relation between R2, the squared
multiple correlation coefficient between y and the X's when these are correctly measured,
and R'2, the corresponding value when errors of measurement are present.”  We use
Cochran's equation 3.6 (pg. 24):

R'2 = R2 * (reliability of y) * (weighted average of reliabilities of X's).

Suppose R2 were 1.00 in the case of no error of measurement, then R'2 = 1.00 * 0.890 *
0.949 = 0.845, where 0.949 is a weighted sum of the reliabilities of the best predictors,
711, 714, Negsob.  (The weights are the absolute values of the beta coefficients for 711,
714, and Negsob, scaled to sum to 1.00.)

R'2 = 0.845 is the upper bound for prediction of subjective ratings by objective measures
when error of measurement is present in the amounts we have seen in the present study.
Compared to 0.845, the observed 0.763 is 90% of maximum.  As in the case of the
T1A1.5 study, the ability to predict is good but shows some room for improvement.
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5.3.4 What “should” our measures measure?

The MPEG data sets included one HRC with a unique impairment that has stimulated
discussion and influenced the thinking on how video performance parameters should be
developed and related to human perception of impairment.  This particular impairment
was a smooth horizontal stretching or scaling of the output video by about 30 pixels.
This impairment may have resulted from an A/D sampling clock or a D/A output clock
that was operating at the wrong frequency.  However the impairment was introduced, the
important observation was that the naïve viewers (and subsequent expert viewers looking
at the output video) did not notice the impairment at all!  It was only detected in the
laboratory after the calibration programs failed to produce reliable spatial and temporal
registrations of the sampled output and input video images.  As previously described,
these calibration programs utilized mean square error between the output and input
images to determine the best spatial and temporal alignment.

The preceding observation raised the question as to whether objective video quality
parameters should detect such an impairment.  One line of reasoning dictated that since
the viewer is unable to detect the impairment, the objective parameters should respond
similarly and not be sensitive to the impairment.  Advocates of this school of thinking
believe that the ultimate goal of objective parameters is to replace subjective
assessments.  A different line of reasoning argued that the objective parameters should
detect the impairment even though the viewers did not because some users would
certainly want to know if their output video was undergoing such a distortion.  In
particular, it was felt that a technician responsible for maintaining a large broadcast
network would gasp at the thought of such an impairment and would desire to isolate and
replace the faulty piece of equipment.

Clearly, there appears to be a need to develop a hierarchy of objective measurements
with differing degrees of sensitivity to subjective judgments of distortion.  This hierarchy
should encompass the concerns of end-users as well as service providers and provide the
flexibility to specify performance parameters for a wide range of systems and
applications.  Figure 13 gives a first attempt to describe this hierarchy.  The horizontal
axis at the bottom of the figure is an attempt to represent, on a one dimensional scale, all
of the perceptual dimensions of video quality.  For illustration purposes, examples of
independent perceptual dimensions of video quality might be spatial resolution, temporal
resolution (e.g., transmitted frame rate), and color fidelity.  Experiments should be run to
determine these perceptual dimensions of video quality and objective parameters should
be developed to independently quantify each of these dimensions.

This approach is preferable to developing one global parameter that is sensitive to all
dimensions of video quality since the end-user and service provider are given maximum
flexibility for specification of system attributes that match the targeted application.  For
example, medical imagery might require very high spatial resolution while desktop video
teleconferencing might only require moderate spatial resolution to be subjectively rated
“excellent” quality.  The vertical axis in the figure specifies the degree of sensitivity of
the objective measurements to subjective judgments of distortion.  At the lowest level
(detectable), an objective parameter is detecting distortions that are not visually
perceptible.  This level of sensitivity would be useful for maintenance and monitoring of
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system performance and would address the concerns mentioned earlier regarding the
technician and the impairment that horizontally stretched the video.

The next level (Perceptible) would take the human visual system into account in that
impairments which are detectable but not perceptible would be filtered out by human
visual system filters.  For example, several dropped video frames that are detected by a
temporal resolution metric might be filtered out if they occur immediately after a scene
cut or a point where the human visual system is known to exhibit reduced sensitivity.
Note that this approach of filtering each perceptual dimension of video quality (see
Figure 13) is somewhat different than that proposed in [24], where the approach is to
develop one global parameter that is sensitive to all dimensions of video quality.

The third level (Meaningful) would allow only those perceptible impairments that affect
the end-users’ perception of quality.  This level is the hardest to quantify since higher
order judgmental processes in the brain are involved.  The human judgmental filters used
to transform perceptible measures of distortion into meaningful measures of distortion
must take into account the targeted application and viewer population.  For example, the
expectations of broadcasters using a “contribution” quality system (i.e., a system used to
transport very high quality video from one studio to another) are much more rigorous
than the expectations of someone using a “freebie” Internet videophone.

Most subjective experiments are designed to produce results that are meaningful and thus
these experiments include higher order judgmental processes that are not very well
understood or controlled.  This could explain why the “random” or unexplained variance
between two identical sets of video clips rated in separate subjective experiments appears
to be significantly larger than what might be expected from the confidence intervals
calculated on the basis of only one experiment.  It is not clear how much of this higher
order information the objective quality parameters should endeavor to explain.

In Figure 13, the dimensions of video quality are assumed to be independently
quantifiable by objective parameters.  However, in reality there will always be some
degree of dependence between the objective parameters.  Additional processes could be
introduced to account for these interactions or to transform dependent objective
parameters into a set of orthogonal or independent objective parameters.
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6. Future Directions

6.1 Solving the Time Collapsing Problem

The time collapsing problem was mentioned briefly in section 3.2.3.  This is the process
that is used to time collapse frame-by-frame objective parameter values to produce a
composite value that reflects perceived quality changes.  Subjective tests conducted in
accordance with CCIR Recommendation 500 produce one subjective mean opinion score
(MOS) for each HRC-scene combination (normally a 10 to 15 second period).  However,
consumers in the home viewing environment are continuously noticing quality changes in
their received picture.  Recent advances in subjective testing methodology [25] are being
developed that would allow continuous (in time) subjective sampling.  These techniques
give the viewer freedom to rate the perceived quality “on-the-fly” by adjusting the
position of a slider.  The position of the slider is sampled several times per second to
yield a continuous stream of subjective scores.  When these subjective techniques are
standardized, they may be used to collect continuously sampled subjective data, which,
together with the continuously sampled objective data, can be used to develop better time
collapsing functions.

Detectable
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Meaningful

Perceptual Dimensions of Video Quality

Spatial
Resolution
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Resolution

Color
Fidelity
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Sensitivity
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(Depends on application and viewer population)

Human Visual System Filters

Figure 13  Hierarchy for Developing Objective Video Quality Parameters
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6.2 Measuring Distortions in the Chrominance (Color) Signal

The objective measures are able to account for a surprisingly large amount of the
subjective variance using only the luminance portion of the video signal.  It is reasonable
that some portion of the unexplained subjective variance is due to color distortions.
Investigations into psychometrically uniform color spaces such as those developed by the
International Commission on Illumination (CIE) [26] might produce useful objective
measures for distortions in the chrominance or color signal.  These perceptually uniform
color transformations could be used in conjunction with the measurement methodologies
presented in ANSI T1.801.03 to investigate color distortion metrics.

Studies of subjective response to color distortion will be especially important:  Recent
results indicate that consumers may not only tolerate color distortion in video, but
actually prefer some kinds of color distortion!  This kind of result is most clearly seen in
studies that include VHS as an HRC [1, 2, 20].  Every example of VHS we have tested
with consumers has had quite distorted color and yet surprisingly good ratings.  (Readers
familiar with the multi-lab T1A1.5 study [20, 21] should recall how the brightly-colored
blouses in the scenes “vtc1nw,” “vtc2mp,” and “vowels” appeared in the VHS, Null, and
45 Mb/s HRCs.)

6.3 Building Objective Video Quality Models

For the purposes of this paper, a video quality model is defined as a mapping of the
objective parameter values to a single figure of merit, such as an estimated subjective
mean opinion score (MOS).  Building objective video quality models involves
conducting simultaneous subjective and objective tests and determining how objective
parameter values can be used to predict the subjective viewer responses.  This model
building process is necessary for determining the overall accuracy of the objective
parameters and for identifying the portion of the subjective responses explained by the
objective parameters.  However, developing useful video quality models for operational
video transmission systems is a much more complicated process.

Two simple examples illustrate the complexity involved.  For the first example, consider
two different applications: transmission of high-resolution graphics imagery with pointer
capability, and transmission of sign language.  Here, these two fundamentally different
applications require different performance characteristics for the various dimensions of
video quality (e.g., spatial resolution, temporal resolution, or color reproduction
accuracy).  The graphics application requires very high spatial resolution with low frame
rates while the sign language application requires high frame rates at a lower spatial
resolution.  An objective model that produces overall quality estimates from a set of
fundamental objective parameters would have to account for these application-specific
effects.

For the second example, consider two different viewer populations: the naïve or non-
expert viewer, and the critical expert viewer.  In this case, the expert viewer may tend to
downgrade the quality more than the naïve viewer for the same amount of video
impairment.  For an actual example that illustrates this viewer population effect, see [6].
Precisely the opposite effect of expertise has also been observed:  In the GTE Labs
portion of the multi-lab T1A1.5 study, half the viewers were quite experienced video
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teleconferencing users.  These experienced users were more forgiving of the
teleconferencing HRCs in the study [20, pg. 22].

Another influence on modeling accuracy is the changing expectations of people over
time.  This is particularly true for digital video systems where the technology is
improving rapidly and the cost is decreasing rapidly.

For these reasons, objective video quality modeling is valid only if the application and
viewer population are well defined.  Given sufficient time and effort, objective
parameters can be used to develop effective video quality models for a large number of
video applications and viewer populations.  References [6, 16, 27] present several such
preliminary models for various applications.  The subjective and objective data in this
paper can also be used to produce a model of video quality for broadcast applications.

6.4 Setting Guaranteed Levels of Service

Many users want assurances that they will receive some guaranteed level of service.  This
will involve the determination of appropriate thresholds for individual parameter values
or video quality model outputs.  Different thresholds could be used to define levels or
grades of service (e.g., low, medium, high).  If the thresholds are violated, the user will
have a mechanism to resolve the problem.  It is expected that the establishment of
standard threshold levels will require a multiyear effort and cooperation by
manufacturers, carriers, and users.

6.5 Determining subjective dimensions of video quality

The technical community recognizes a number of quality impairments for compressed
video [see 12, 27].  These impairments correspond to what Section 5.3.4 and Figure 13
refer to as the Perceptible layer of a hierarchy of objective measurements.  Work that
needs to be done at this level of the hierarchy is of three types:

- Systematize the perceptual impairments.  The impairments are certainly related
to each other by means of common causes in a video system.  The perceptual
impairments are probably related to each other in subjective terms as well.  The
subjective terms, or "dimensions," that  relate the various impairments do not
necessarily map one-to-one with the objective causes of the impairments.
Finding the subjective dimensions that unite and relate the many specific
perceptual impairments will help in understanding the relationship between
objective video quality and subjective video quality.

- Catalog novel impairments.  Having a system for cataloging impairments should
facilitate recognizing a novel impairment when it appears, just as having a
system for cataloging stars or a system for cataloging butterflies helps in
detecting when a new one has been discovered.

- Relate the subjective dimensions to objective measures.  Objective measures
currently are used to predict a single overall subjective quality judgment.  As
discussed in Section 5.3.4, a finer level of prediction would be useful in order
to take account of specific contexts in which video is used.  The subjective
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dimensions of video quality would probably be at about the right level of
analysis to handle context and usage effects.

6.6 Comparing subjective video quality to overall subjective value

Section 5.3.4 discusses even more high-level video attributes or impairments under the
title “Human Judgment Filters.”  Although Committee T1 may not claim jurisdiction over
some of the higher level attributes of judgment, we note that many of the member
organizations will ultimately have to be interested in these higher-order variables.
Examples are

- Overall subjective value of a video system to a consumer

- Willingness to pay for a video system

- How important picture quality is for the consumer compared to other  system
attributes in determining overall system value -- attributes such as usability of
the user interface, number of channels, quality of content available, price,
sound quality, and even cabinet design.

Although some work has been done relating video quality to other high-level variables
such as audio quality [28], much more work remains to be done.

7. Conclusions

• The current generation of objective video quality measures has achieved good
prediction for entertainment-level HRCs.  The objective measures captured about
90% of the subjective information that could be captured considering the level of
measurement error present in the subjective and objective data.  We have not
attempted to tune this set of measures to apply to a specific testing situation, so we
cannot say for certain whether this current set of measures has the potential to be
fine-tuned for application in testing equipment.  However, the current objective
measures must be considered as reasonable candidates for testing applications.

• The kinds of objective variables that predict subjective responses well for MPEG
video are

(a) Measures of the addition of false edges, in particular the matrix measure
Negsob,

(b) Measures of lost sharpness of edges,

(c) Measures of change in motion.

• A traditional objective variable that does not predict subjective responses well for
MPEG video is PSNR.  PSNR captured only about 21% of the subjective information
that could be captured considering the level of measurement error present in the
subjective and objective data.

•  Areas in which further work is recommended:

-  Time collapsing:  Integrating a time series of quality measurements to form a
single overall measurement,
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-  Computing resources; the best current objective measures require a lot of
computer resources,

-  The effect of color fidelity on overall judged video quality,

-  Assessing objective measures in specific domains, such as teleconferencing vs.
entertainment,

-  Discovering unifying dimensions of subjective quality/impairment, as opposed
to specific individual impairments,

-  Relating picture quality to overall value of a video system.
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