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  METHODS FOR ANALYSIS OF INTERLABORATORY VIDEO PERFORMANCE
STANDARD SUBJECTIVE TEST DATA

1.  INTRODUCTION

Working Group T1A1.5 has agreed on a test plan for measuring the subjective quality
of video teleconference system performance (T1A1.5/93-014R4).  The purpose of the
present contribution is to present in detail the methods for analysis of the data
expected, especially in filling out previous statements of analyses with respect to any
systematic effect a laboratory may have on the Mean Opinion Score (MOS) of any given
Hypothetical Reference Circuit (HRC).

The plan may be summarized as follows:

3 laboratories, X, Y, Z
25 HRCs, 1, 2,..., 25
25 scenes, a, b,..., y
625 HRC-scene combinations, or test combinations
30 accepted viewers in each lab, screened from about 36 initial viewers, some of
whom may not pass a consistency check, broken into 3 teams of 10 each
3 sets of videotapes. Red (R), Green (G), Orange (O), each set of 4 tapes to be

viewed by a corresponding team in each lab, each set including 10 HRCs (thus
overlapping slightly)

4 subteams within each team since each viewing session is limited to at most 3
viewers

4 sessions for each subteam to view the 4 tapes, each tape (and session) being
limited to about 32 minutes

9 types (1, 2,..., 9) into which the 25 HRCs are classified, 1 to 4 in each type
5 content categories (A,B,C,D,E) of the 25 scenes, 3 to 6 in each category
5 possible ratings of test combination scene impairment by viewers on voting

forms ranging from Imperceptible to Very Annoying, which will be translated into
5,4,3,2,1 in the data reduction

This tabulation is far from a complete description, but suffice it to add that test
combinations are ordered on the tapes by a restricted randomization,  that subteams are
selected at random from the total viewers available (from a specified type of
population), and that the four tapes are presented to the corresponding four subteams
in random permutation orders.

Section 2 of this contribution shows how to obtain the MOS of any given test
combination from any one laboratory and its (internal) standard error.  These are
straightforward and can be generalized immediately to an HRC type-scene
combination, to a HRC-content combination, to a type-content combination , to an HRC 
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((i.e., averaged over all scenes), to a scene (i.e., averaged over all HRCs), similarly to an
HRC type, and to a content category.  By virtue of the balance in the entire test these
can be averaged over all three laboratories, but the meaning and standard errors of
such averages require consideration of possible differences among laboratories, which
is done in Section 3.  The results are applied in Section 4 to assess the uncertainty of a
MOS obtained by any one laboratory with any number of viewers.  Whether
differences among HRCs, scenes, viewers, and the laboratories are statistically
significant, i.e., larger than can be explained as random sampling error, can be tested
by analysis of variance, which is introduced in Section 3 and presented in detail in
Appendices 1 and 2. 

2.  MEAN OPINION SCORES OF HRCS AND THEIR STANDARD ERRORS FOR
EACH LABORATORY

Each test combination is scored by 10 viewers in each laboratory, so its MOS is simply
the mean of these 10 scores.  Call the scores x , x ,..., x .  Then 1 2 10

the sample standard deviation is 

The (internal) standard error of x  is  
C

under the assumption that the 10 scores are independent, so it is important to assure
that viewers do score independently.  ("Internal" means that any differences among
labs are not included.)  It is possible that the viewers in the same session might score
more similarly than those in another session; this should be guarded against, and it is
assumed that session-to-session differences (beyond the random differences among
viewers) are zero or negligible.
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Under the assumption of normal distribution of scores (obviously not satisfied) a 95%
confidence interval for the true MOS of a test combination over a whole population of
similar viewers is

The effect on the Student t coefficient of having scores simply 1, 2, 3, 4, 5 (in some
proportions) rather than with a normal distribution, has been determined by computer
simulation.  The effect can be substantial (changing the first decimal digit), especially
for asymmetric two-point distributions of scores, sample sizes of 10 or less, and the
more extreme confidence levels..

The three MOSs from the three laboratories can be summed and divided by 3 to obtain
a mean MOS.  This is a better estimate of the true MOS (over a whole population of
similar viewers and a whole population of similar labs) because

(1)  It is the mean of 30 scores rather than just 10, and  
(2)  it is  the mean of three independent laboratories rather than just one.

Just how much better an estimate it is a question requiring consideration of the
differences among laboratories and is deferred to Sections 3 and 4.

HRCs of the same type may have MOSs more nearly the same than those of different
types, so a MOS of a type-scene combination is of interest, simply a mean of the one to
four HRC MOSs of the given type.  If, for example, there are four HRCs of the given
type and it is assumed that the sample standard deviations of the four do not differ
systematically (they will differ randomly by virtue of the finite sample size), then the
standard error of the type-scene combination MOS is

Similarly it may be of interest to obtain an HRC MOS for all scenes in a content
category; there are three to six scenes in a content category.  The mean of the several
MOSs is the appropriate estimate, and its standard error follows as above with
appropriate changes in numbers.

Similarly it may be of interest to obtain an MOS for each type-content combination;
there are 9x5 = 45 such combinations, with from 1x3 = 3 to 4x6 = 24 HRC-scene
combinations in them.  Given the similarity of these HRC-scene combinations within
each type-content combination, it may be reasonable to assume no systematic
differences among the standard deviations and average the sample variances, divide by
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(1)

(2)

the total sample size, and take the square root to obtain the standard error of the
average MOS.  (That is what is done in the above displayed expression, in a different
order.)  

One can further average the HRC MOSs over all scenes, or the scene MOSs over all
HRCs, or both, but the calculation of a corresponding standard error is more
complicated because the standard deviations might change with HRC type and with
scene category.

3.  DIFFERENCES AMONG LABORATORIES

Differences of MOSs among laboratories can be estimated simply and immediately by
virtue of the balance of the experiment.  This applies to any test (HRC-scene)
combination, any type-scene combination, any HRC-content combination, any type-
content combination, any HRC, or any scene.  It is more generally applicable to take the
difference of each lab MOS from the corresponding mean MOS over all three labs; thus
obtaining an estimated bias or systematic error, 

These may or may not be statistically significant (more different from zero than can be
accounted for by random sampling variations).  The significance can be tested by
Analysis of Variance (ANOVA), which is discussed further below.

The standard deviation among the three labs should also be calculated

(actually a byproduct of the ANOVA).   The denominator reflects the fact that there are
only two independent differences and makes the variance an unbiased estimate of the
true variance of the hypothetical population of laboratories.  Further discussion of samong

 is given in Sec. 4.labs

The general theory and methodology of ANOVA are given in Henry Scheff 'e's book The
Analysis of Variance (Wiley, 1959).  Many computer programs are available, but great
care must be exercised in applying them in this case, in which some of the factors are
random rather than fixed (and the levels of one of the factors, the viewers, are nested
within labs).  The HRC and scene effects are reasonably taken as fixed; i.e., we are
interested precisely in the HRCs and scenes included in the experiment and none other. 
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The viewers included, on the other hand, merely represent a population of viewers,
and it is assumed that they can be considered a random sample.  Likewise it is hoped to
draw conclusions about laboratories in general that might be conducting subjective
tests, not merely about the three that are participating in the experiment.  Realistically
they do not form a random sample of laboratories, but to make any generalization it
seems better to assume that they do in the mathematical model for the ANOVA,
allowing for the generalization to labs in general,  than to assume we are interested in
only these three laboratories, because the ANOVAs for fixed and random factors are
different.

Whether the differences are statistically significant or not, they may or may not be
practically  significant.  Practical significance is a matter of judgment by the subject
matter specialist and thus might vary from one specialist to another, but qualitatively
could be said to depend on how much the interlab variation increases the root mean
square error, or uncertainty, of a MOS.  Whether the interlab variation is statistically
significant, or not, the root  mean square error can be calculated and judged relative to
the (within-lab) standard error of a MOS.

The estimates of the main effects and interactions of the factors tend to be the same for
all of these types of models, but the testing of their significance (and thus their
uncertainties or (inversely) their accuracies) depends on the type of model.  For
example, the main effect of lab Y is x  - x  as in Sec. 3 (whether for a particular HRC-.Y ..

scene combination or a type-content combination, etc.), but its statistical significance is
tested differently for different mathematical models.

Since we have both fixed and random factors, we have a mixed model, the general
theory of which is discussed in Chapter 8 of Scheffe's book.  Furthermore his second
extensive example (pp. 276-289) is close to, but not coincident, with our experiment,
because it has two fixed and two random factors and one of the random factors is
nested, but within both a fixed and the other random factor, rather than just the latter,
as in our experiment.  Hence the model has to be set up carefully and in detail, but the
details are reserved for Appendix 1 and Appendix 2 of this memorandum.

In general an ANOVA separates the total sum of squares of deviations of individual
scores from the overall mean into components associated with each main effect,
interaction, and error, just as a vector in high-dimensional space can be resolved into its
components.  Likewise the total degrees of freedom (d.f.) (3x4x6x10 = 720 in one case) is
partitioned into components associated with each sum of squares.  For example, lab
main effects (averaged overall) have 3-1 = 2 d.f. since there are only two independent
deviations from the mean, and HRC main effects have 4-1 = 3 d.f. for one type.  A mean
square is calculated for each effect by dividing the sum of squares by its d.f.  An error
mean square is likewise calculated.  The statistical significance of an effect is
determined by calculating an "F ratio", the ratio of its mean square to an error mean
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square, and comparing it with a tabulated upper percentage point of the F distribution. 
If it is larger, it is "significant at the 5% (say) level."  The tabulated percentage point has
been calculated "once and for all" based on the normal distribution of the observations
and the "null" hypothesis that the true effect is zero; 
it depends on the d.f. of the numerator and the d.f. of the denominator.

ANOVAs can be performed by each lab separately on its data.  These can then be
combined over all three labs.  It is possible that effects not significant within labs
become significant in the combined ANOVA because the d.f. are tripled.  Of great
importance is the added result of the interlab effects.

4.  UNCERTAINTY OF MEAN OPINION SCORE OF AN HRC-SCENE
COMBINATION BY ANY GIVEN LABORATORY

Consideration here is limited to the effect of interlaboratory variation on the
uncertainty (such as standard error) of the MOS of any particular HRC-scene
combination as measured by a single laboratory.  This could be extended to the MOS of
an HRC averaged over a specified category or the entire set of 25 scenes in this
experiment.

It is assumed that
(1) the three labs in the experiment are a random sample of a population of similar

labs that have a mean MOS µ and a standard deviation of their biases F  b

(2) the three labs select their viewers at random from populations of viewers with
the same standard deviation F of opinion scores but possibly different means.

The possibly different means in (2) introduce no theoretical difficulty because they
simply contribute to the biases of their respective labs, which are measured by F  .  (It isb

desirable to have no biases, but the purpose here is to measure them if they are
present.)  Note that F  includes none of the random variations of individual viewers;b

choosing a lab at random introduces a standard deviation F  in addition to any randomb

variation among viewers.

Thus the total variance of a MOS of an HRC-scene combination from a random
laboratory with N independent viewers (scores) is

If we knew F and F  , then we would be about 95% confident that the true MOS  µ isb

within the measured MOS ± 2 (F  + F /N) .b
2 2 1/2
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(3)

(4)

(5)

The remainder of this section is devoted to obtaining an unbiased estimate of the
variance F  + F /N from the data expected from the experiment with three labs andb

2 2

with each lab having n = 10 independent scores for each HRC-scene combination.

Each of the three labs yields a sample variance s  (Sec. 2) from the 10 scores in each that2

is an unbiased estimate of F .  Denoting them s ,  s , s , we have a better unbiased2 2 2 2
X Y Z

estimate of F , 2

with 27 d.f.  It might seem reasonable to estimate F  by (2) in Sec.3, but it includesb
2

some variation due to the finite number of individual viewers (n = 10) in each lab. 
Thus the sample variance s  is an unbiased estimate of 2

among labs

Hence an unbiased estimate of F  isb
2

Hence an unbiased estimate of F   + F /N isb
2 2

where s  is given by (2) and s  by (3).  (The square root of an unbiased estimate is2 2
among labs

biased, but the bias depends on the shape of the distribution.  For the normal
distribution the square root is 11.4% low for n = 3 and 7.7% low for n = 10.)

Examples:

(a) The MOS of a test combination from any one of the three labs in the experiment is
estimated to have a standard error s  (2).among labs

(b) Any future lab with 10 viewers on the same test combination is also estimated to
have MOS standard error s  (2).among labs

(c) Any future lab with 15 viewers on the same test combination is estimated to have
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MOS standard error (5) with N = 15 and n = 10,

We would be about 95% confident that the true MOS is within twice this standard error
of the measured MOS.

(d) If the data from the three labs in the current experiment are combined to yield a
test combination mean MOS, its standard error would be s  divided by %3.among labs

However, it is definitely not recommended that a single test combination be tested in
isolation, and its MOS should not be of interest in an absolute sense.  It should be tested
only together with other HRC test combinations of interest or a standard or reference
HRC test combination by the same lab with the same panel of viewers.  Then the lab
bias cancels out, and the standard error of the difference of mean opinion scores,
MOS  - MOS  is1 2

which estimates F(2/N)  if the viewers score the two combinations with equal1/2

precisions.
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(1)

(2)

(3)

APPENDIX I
ANALYSIS OF VARIANCE WITHIN EACH LABORATORY

For clarity we first consider the analysis of data within each laboratory.  This will
answer the questions of whether the MOSs of HRC-scene combinations, of HRCs, of
scenes, and of viewers within the lab are statistically significantly different, i.e.,
whether they are more different than can be accounted for by random variations among
the small sample of viewers.  Looking at each lab separately initially has the advantage
that the lab identity is given and thus a subscript to identify the lab is unnecessary. 
This will clarify the part that  random viewer variations play in the analysis, which will
be extended in Appendix II to include all three labs.

We let

be the score on the ith HRC and jth scene by the kth viewer.  Thus x  is one of theijk

integers 1, 2, 3, 4, 5; I is the number of HRCs in a type, fixed in any one analysis of
variance (ANOVA) but between 1 and 4; J is the number of scenes in a content
category, similarly fixed but between 3 and 6; and K, the number of viewers, is fixed at
10.  The Greek letters represent fixed effects that, except for µ, are deviations from µ, so
that by definition we can take 

These are the effects ("main effects" "  and $ and  "interactions" ( ) that we want toi j  ij

estimate, but we have to allow for the random effects of the K viewers, whose averages
over the sample have some error but whose deviations over the viewer population
sampled average to zero.  The v , u , w  and e  are assumed to be independentk ik jk ijk

random variables.  The average, or mean, over the population is denoted by E
(expected value):

In addition, by proper definition of v , u  and w  (relative to these HRCs and scenes;k ik jk

Scheffé, pp. 262-263),
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(4)

which introduces some dependence among v , u , and w  for each k.k ik jk

The corresponding variances are denoted by

the notation indicating the assumption that they are the same for all HRCs in a type, all
scenes in a content category, and all viewers.  This seems a reasonable assumption. 
Aside from this assumption the ANOVA could be applied to all HRCs viewed by the
same viewers and all scenes rather than only within a type and content category.  Thus
it may be possible to expand the ANOVA beyond a type-scene category, e.g., combine
several types or several content categories if their variances do not differ significantly.

The model (1) is not a restriction; it merely names and classifies the effects, if any, that
are there.  For example, the kth viewer may have a bias v  common to all his scores or ak

bias u  common only to his score on the ith HRC.  Some of the terms may be zero butik

should not be assumed to be necessarily; the ANOVA will determine whether they are
within the sampling variation.

A single HRC-scene combination may be analyzed by itself if desired and is the special
case of (1) with I=J=1.  The model collapses simply to

which would not be usually regarded as an ANOVA model.  Such individual analysis
does not make full use of the many related data, although a confidence interval for µ
could be calculated based on the 9 d.f. available.  From the ANOVA based on (1) a
confidence interval for each of the IJ HRC-scene combinations can be calculated based
on between 18 and 135 d.f., depending on the type-content combination, rather than
just the 9 d.f. available from a single HRC-scene combination.
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(5)

(6)

(7)

Various averages of the scores may be formed to estimate the parameters of interest.
Averages are denoted by replacing the subscript averaged over by a dot; thus

estimates the MOS of the ijth HRC-scene combination,

Similarly

The last equation and statement follow by substitution in (1) and by (3).  The estimates
are unbiased.  They would not be unbiased if the numbers of scores differed from
viewer to viewer, so the balance of the design is important.  (This statement applies to
the interlaboratory experiment also.)

It follows from (6) (after some algebra) that the sum of the squares of (6) over all IJK
scores, divided by (I - 1) (J - 1), is a "mean square" with expected value KF  + F , where

(

2 2

by definition

The Analysis of Variance (ANOVA) of the IJK scores x  consists of the decompositionijk

of the total sum of squared deviations from the overall mean x...,
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into orthogonal components such as the sum of the squares of (6), the corresponding
decomposition of the total d.f. IJK - 1, forming the quotients (mean squares), and testing
the mean squares against the error mean square to see whether they are larger than can
be accounted for simply by random variations among the scores.  The ANOVA is
summarized in Table 1.

The last column of Table 1 is a theoretical column that indicates what the mean squares
estimate unbiasedly.  Thus the residual mean square s  is an unbiased estimate of F2 2

(see (4)).  The mean square s , for example, estimates KF  + F , so the ratio  s /s4 ( 4
2 2 2 2 2

indicates, by having a value sufficiently larger than 1, whether there are any non-zero
interactions ( .  More precisely, ifij

where the last symbol represents the tabulated upper 5% point of the (null) F
distribution with (I -  1)(J - 1) and (I - 1)(J - 1)(K - 1) d.f., then we conclude that there 
are some non-zero  ( .  For example, if I = 3, J = 4, and K = 10, then  F   = 2.27.ij 6, 54, .05

The last column of Table 1 shows that each of the three types of interaction, as well as
the viewer main effect, can be tested for significance in this way.  If any one is not
significant, it is concluded that all (  = 0, or F  = 0, or F  = 0, or F   = 0, as the case mayij u w v

be (or any combination thereof).  If so, the rest of the analysis is simplified because one
or both of the fixed main effect expected mean squares reduce to two terms,

and their significance can be tested by the F ratios

(neglecting nonnormality effects).

On the other hand, if one or both of the random interaction mean squares is
significantly greater than s , then one or both of the fixed main effect mean squares 2

should be tested by the F ratios s /s  or  s /s  , as indicated by the expected mean1 5 2 6
2 2 2 2

squares.
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Table 1
Analysis of Variance of Scores in an HRC Type - Scene Category Grouping in a Single Laboratory

Source of Variation Sum of Squares d.f. Mean Square Expected Mean Square

HRCs (Rows) I-1 s

Scenes (Columns) J-1 s

Viewers K-1 s

HRC X Scene Interaction (I-1)(J-1) s

HRC X Viewer Interaction (I-1)(K-1) s

Scene X Viewer Interaction (J-1)(K-1) s

Residual (I-1)(J-1)(K-1) s

Total IJK-1

1
2

2
2

3
2

4
2

5
2

6
2

2
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(9)

The sums of squares are in practice not calculated by forming the deviations indicated. 
For example,

However, the differences on the right-hand side are very small differences between
very large numbers and must be calculated with no or negligible rounding.  There are
standard software packages that include various cases of ANOVA, but care must be
used in applying them, especially when random as well as fixed effects occur.  (See
Scheffé, pp. 261-290.)

If some significant effects are found, the ANOVA does not tell which of the individual I
or J or IJ  fixed effects are significant, but one can estimate standard errors and
approximate confidence intervals for any effect of interest.  For example, the 95%
Student t confidence interval for a single HRC-scene combination is 

where

However, as in Sec. 4 (page 8) above, it is recommended that differences of MOSs be
calculated rather than absolute values so that systematic errors of viewers (and
laboratories) cancel.  Thus the 95% confidence interval for x  - x  is 1j. 2j.

where s comes from the residual line of Table 1 and should be considerably smaller
than s .  Furthermore, if I=10, J=25, K=10, then t  = t  = 1.959 whereasij L,.025 1944,.025

t  = 2.262.K-1,.025

If one calculates more than one such interval, then the confidence that all of them cover
the true means is reduced.  To have at least 95% confidence that all such intervals cover
the true means one must replace t  by a larger coefficient,  t , where c is the total

L,.025 L, .025/c

number of intervals calculated in the experiment (R. Miller article on "Multiple
Comparisons" in  Encyclopedia of Statistical Sciences edited by S. Kotz, N.L. Johnson,
and C.B. Read, Vol. 5, 1985, p. 681) .
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(12a)

APPENDIX II
ANALYSIS OF VARIANCE OVER ALL LABORATORIES

The concepts for the analysis of variance (ANOVA) introduced in Appendix  I carry
over to the ANOVA of the data arising from all three laboratories (or any number of
laboratories in general); one just has to adjoin to the mathematical model (1) the
appropriate terms for the main effects of labs and the interactions of labs with HRCs
and scenes.  These will be considered random effects rather than fixed effects because
we are interested not merely in these three labs but in all similar labs that might make
such tests.  If we denote the lab main effects by y  (l = 1, 2, 3),  the average of y  over thel l

population of labs, E , is zero, but the sample average, y. = (y  + y   + y )/3, is not, justyl 1 2 3

as for the viewer effect v  in (1).k

There is one feature of the interlab ANOVA not present in the intralab ANOVA of
Appendix I.  All of the intralab factors in (1) are crossed; i.e., every level of each factor
occurs with each level of the other two factors.  On the other hand, the viewers are
different in different labs; they are nested within their respective labs.  Hence there are
no main effects v  of viewers irrespective of lab; the term v  must be replaced by v  fork k kl

the kth viewer in the lth lab.

The model equation (1) for a single lab is thus replaced by

where (2) still holds for the fixed effects " , $ , and (  and all of the random effects y , z ,i j ij l il

..., l  have expected value zero as in (3) and variancesijkl

as in (4).  As in (3a), by proper definition,

 In addition to the nesting, a noteworthy detail of (11) and (12) is the second-order
interactions r , u , and w , measured by variances F , F , and F , which may or mayijl ikl jkl r u w

2 2 2

not be found to differ from zero in the ANOVA.
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(14)

(15)

(16)

Just as in Appendix I, various averages of the scores may be formed to estimate
parameters of interest, but now there is additional averaging over all labs.  For
example,
 

estimates the MOS of the ijth HRC-scene combination,

while

Just as in Appendix I, the total sum of squared deviations from the overall mean x ,....

can be decomposed into orthogonal components associated with the various effects. 
These are listed in Table 2, where, unlike Table 1, the computing forms like the right-
hand side of (15) are used.  For example, the HRCX Viewer Interaction must be
computed within each lab since the viewers differ from lab to lab and then summed
over the L(=3 in our application) labs.  The four terms of the sum of squares for this
interaction in Table 2 follow from the definition

which in turn follows from the analogous interaction in Table 1.  (The other terms
combine in pairs, by using definitions of means.)

The reader may confirm that the 11 component sums of squares in Table 2 add exactly
to the total sum of squares and that the 11 component d.f. add to the total d.f. IJKL-1. 
The 11 component sums of squares and the total should be computed separately to
provide a check.
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Table 2.
Analysis of Variance of Scores in an HRC Type - Scene Category Grouping in All Laboratories

Source of Variation Sum of Squares d.f. Mean Square Expected Mean Square

HRCs I-1 s

Scenes J-1 s

Laboratories L-1 s

Viewers (Within Labs) L(K-1) s

HRC X Scene Interaction (I-1)(J-1) s

HRC X Lab Interaction (I-1)(L-1) s

Scene X Lab Interaction (J-1)(L-1) s

HRC X Viewer Interaction L(I-1)(K-1) s
(Within Labs)

Scene X Viewer Interaction L(J-1)(K-1) s
(Within Labs)

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
2
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HRC X Scene X Lab Interaction (I-1)(J-1)(L-1) s

Error  (HRC X Scene X Viewer L(I-1)(J-1)(K-1) s
Interaction Within Labs)

Total IJKL -1

10
2

2

See definitions in Table 1.  Also, 
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As for Table 1, the expected mean square of s  (for example), which results from (16)8
2

by dividing by L(I - 1)(K - 1), is obtained by substituting means such as (11), (13), and
(14) in (16), finding most of the terms cancel, and taking expected values of the
remaining terms in u's and e's.

The statistical significance of four of the first 10 components in Table 2 can be tested by
forming an F ratio s /s  (i=4, 8, 9, 10) as indicated by the expected mean squares, andi

2 2

comparing with the 5% point (say) of the (null) F distributions tabulated in statistics
books.  If one or more of these show significant effects (as is quite likely because of the
large error d.f.), then tests of one or more of the remaining effects are not performed
with denominator s  but with denominator indicated by the expected mean squares. 2

These are summarized in Table 3.

Table 3.
F Tests of Significance of Effects Other Than Those with Denominator s2

          Effects  Test Ratio       Numerator d.f.     Denominator d.f.                                 
                           

HRCs s /s I-1 (I-1)(L-1)

Scenes s /s J-1 (J-1)(L-1)

Laboratories s /s L-1 L(K-1)

HRCX Scene Interactions s /s (I-1)(J-1) (I-1)(J-1)(L-1)

HRCX Lab Interactions s /s (I-1)(L-1) L(I-1)(K-1)

Scene X Lab Interactions s /s (J-1)(L-1) L(J-1)(K-1)

1 6
2 2

2 7
2 2

3 4
2 2

5 10
2 2

6 8
2 2

7 9
2 2

Again, many effects are quite likely to test as statistically significant if they are nonzero,
even if quite small, because of the large error d.f.  In Table 4 we list the d.f. and
corresponding 5% points of the tabulated F distributions that follow from the design



I ' 4, J ' 6, K ' 10, L ' 3.
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values for the largest HRC type-scene category,

(This neglects the restriction that separate ANOVAs should be made for each color
team, but I and J might end up somewhat similarily for them with grouping to
homogenize s.)

Table 4.
Degrees of Freedom (d.f.) and 5% Points of F in Table 2

ANOVA for Interlaboratory Performance Standard Subjective Test
I = 4, J =6, K = 10, L = 3

Source of Variation d.f. Fd.f., 405. .05

HRCs 3 2.62
Scenes 5 2.23
Laboratories 2 3.02
Viewers 27 1.51
HRCX Scene 15 1.69
HRC X Lab 6 2.12
Scene X Lab 10 1.85
HRCX Viewer 81 1.30
Scene X Viewer 135 1.24
HRCX Scene X Lab 30 1.49
Error 405 1.00

Total 719

These 5% points of F, with 405 denominator d.f., apply only if the denominator is s .  If2

the denominators of the test ratios in Table 3 are significantly larger than s , then the2

test ratios of Table 3 apply and have fewer d.f.  For example, if HRC X Lab interactions
are significant, as shown by s /s , then the test of HRCs is s /s , with only 3 x 2 = 66 1 6

2 2 2 2

d.f. in the denominator, for which F  = 4.76 rather than F  = 2.62. 3,6,.05 3,405,.05

Whether or not significant effects are found, variances and approximate confidence
intervals can be estimated in a way similar to that indicated at the end of Appendix 1. 
For example, the theoretical variance of an HRC-scene MOS is, from (11),
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(17)

(18)

(19)

the terms of which can be estimated using the Mean Square and Expected Mean Square
columns of Table 2.  However, as in Sec. 4 and Appendix 1, it is recommended that
differences of  MOSs be calculated rather than absolute values so that systematic errors
of laboratories and viewers cancel.  Thus

which contains only three of the six terms in (17).  From Table 2, (18) is estimated by

An approximate 95% confidence interval for x  - x  is1j.. 2j..

where L = (I-1)(L-1) and the "Std. Error" is the square root of (19).


