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1 Introduction

The Institute for Telecommunication Sciences (ITS) has developed a number of objective
performance parameters for digital video systems over the past 2 years. Contributions that
document several of these parameters include T1Q1.5/92-112, T1A1.5/92-112, T1A1.5/92-135,
T1A1.5/92-136, T1A1.5/92-138, T1A1.5/92-139, T1A1.5/93-032, and T1A1.5/93-060. ITS
continues to develop and refine the set of technology independent video quality parameters.

 This contribution, together with a companion contribution (T1A1.5/93-153), summarize
the detailed methods of measurement for video quality parameters that have demonstrated
strong correlation to subjective evaluations, and hence should be included in the upcoming
video quality tests that are being conducted by T1A1.5. The level of detail in this contribution
should be sufficient for any interested laboratory to implement the video quality measurements.
Detailed pseudo-code has been included for several of the more complex algorithms to assure
that they will be implemented in a consistent manner across laboratories. To that end, questions
regarding the methods of measurement in this contribution should be directed to:

Stephen Wolf
U.S. Department of Commerce
NTIA/ITS.N3
325 Broadway
Boulder, CO 80303

Phone: (303) 497-3771
Fax: (303) 497-5323
E-mail: steve@its.bldrdoc.gov

To the extent that committee T1A1.5 validates the proposed measurements in this
contribution (and in contribution T1A1.5/93-153), the detailed methods of measurement could
become content material for the VTC/VT draft standard. Any improvements that are made by
committee T1A1.5 during the evaluation of the proposed video quality parameters could also be
included. ITS is currently in the process of performing the objective measurements in this
document on the hypothetical reference circuit video (see contribution T1A1.5/93-014R1) and
will be making these results available to committee T1A1.5.

Figure 1 presents a conceptual block diagram of an in-service perception-based video
quality measurement system. The measurement system is composed of two sub-systems -- a
source instrument and a destination instrument. The source instrument attaches non-intrusively
to the source video and extracts a set of source features that can be used as a reference to quantify
perceptual video quality changes. The destination instrument attaches non-intrusively to the
destination video and extracts an identical set of destination features. An objective quality
estimate of the transmission system performance can then be obtained by comparing the source
features with the corresponding destination features. The contents of this document contribute
to the design and validation of the video quality measurement system shown in Figure 1.

The video quality parameters presented here are computed using two, low-bandwidth
features that are directly measured from the digitized source and destination video. One of these
low-bandwidth features is derived from the Sobel filtered image and the other is derived from
the motion difference image. Parameters based on the Sobel filtered image have proven useful
for measuring spatial distortions such as image blurring. Parameters based on the motion
difference image have proven useful for measuring temporal distortions such as jerky motion.
The perception-based video quality features can be communicated with a very low bit rate,
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much less than the bit rate of the source video. Thus, the quality features can be easily and
economically transferred between the source and destination instrument, which may be
separated by large distances. The practicality of the measurements proposed here have been
demonstrated in a real time PC-based implementation (see T1A1.5/93-105).

This contribution is organized as follows:

1. The methods of measurement for the low-bandwidth source and corresponding
destination features (shown in Figure 1) are described in section 2 of this contribution. Two
methods of measurement for each low-bandwidth quality feature will be described, one that
is believed to be optimal and a second that is an approximate form of the first, but more
computationally efficient. The ultimate intent is to pick just one method of measurement for
each low-bandwidth quality feature.

2. An automatable method for properly time-aligning the source and corresponding
destination features is described in section 3 of this contribution. This method of
measurement can be used for computing the video delay of the HRC shown in Figure 1.

3. The methods for computing the objective video quality parameters (shown in Figure 1)
from the time-aligned source and corresponding destination features are described in
section 4 of this contribution.

4. Several extensions have been made to the basic video quality parameters. These
extensions, described in section 5, seem to provide significant additional information about
HRC performance. However, we are not at this time recommending that these extensions be
included in the first round of objective performance parameter testing. The extensions are
described in this contribution to inform committee T1A1.5 of ongoing video quality research
efforts at ITS.

Figure 1  Conceptual View of Video Quality Measurement System

Source
Instrument

Destination
 Instrument

Hypothetical Reference Circuit (HRC)Source
Video

Destination
Video

Source
Features

Destination
 Features

Objective Video
Quality Parameters

and Video Delay

Video Quality
Measurement

System:
Two Separate

Instruments if the
Source and

Destination are
Geographically

Separated

Objective Video
Quality Parameters

and Video Delay



3

2 Methods of Measurement for Source and Destination Features

2.1 First Method of Measurement for Spatial Information of Source Video (SIS) and Spatial
Information of Destination Video (SID)

This section presents a method of measurement for the spatial information of the source
video (SIS) and the spatial information of the destination video (SID). SIS and SID are features that
are measured in an identical manner from the source video and the destination video in Figure 1.
SIS and SID characterize the spatial detail in the source and the destination video scene. Objective
video quality parameters that measure spatial impairments in the destination video relative to
the source video can be computed using SID and SIS (see section 4). The preferred method of
measurement for SIS and SID is as follows.

1. Using CCIR Recommendation 601-2 (commonly referred to as D1 format), digitally
sample the luminance signal of a source video frame and a destination video frame. Let
YS(tn) represent a source luminance frame of video sampled at time tn, and let YD(tm)
represent a destination luminance frame of video sampled at time tm. These luminance
frames occur at the rate of approximately 30 times per second for NTSC video. ITS plans to
process both the HRC tapes (which are in D2 format) and the subjective viewing tapes
(which will be in Betacam SP format). The HRC tapes were first copied into Betacam SP
format (since the highest quality format of the ITS video laboratory is Betacam SP), and the Y
channel as output by the Betacam SP VCR was then sampled using CCIR Recommendation
601-2. The subjective viewing tapes can be processed as is, without any format conversion.

Note: Per CCIR Recommendation 601-2, the following attributes of the digitizing hardware
should be checked before sampling: the frequency response should be flat (ideally within ±
0.05 db) from 0 to 5.75 MHz, 100 IRE (reference white) should be quantized at 235, and 7.5
IRE (reference black) should be quantized at 16.

2. Next, YS(tn) and YD(tm) are each filtered with the two 3 x 3 masks that are given in Figure
2. The filtering operation that detects horizontal edges is given by the convolution of the
horizontal mask (H) with the luminance images, represented by H∗YS(tn) and H∗YD(tm).
Likewise, the filtering operation that detects vertical edges is given by the convolution of the
vertical mask (V) with the luminance images, represented by V∗YS(tn) and V∗YD(tm). The
pseudo-sobel (PSobel) filtered luminance images combine the outputs of the two filtering
operations as

, (1)

, (2)

where the absolute value and addition operations are performed on a pixel by pixel basis.

Figure 2  Horizontal and Vertical Edge Filters
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3. SIS at time tn and SID at time tm are then computed as the standard deviation (std) of the
PSobel filtered images from step 2, i.e.,

, (3)

and

. (4)

where the standard deviation is computed over all the samples in the viewable region of the
processed D1 video frame (see Figure 3), and G is the gain of the transmission channel or
HRC. Only the pixels contained within the viewable region of the D1 sampled video frame are
used in equation (3) and equation (4) since SIS and SID are perception-based. This viewable
region is defined to consist of 672 pixels by 448 lines and is centered in the D1 video frame
(which is composed of 720 horizontal pixels by 486 active lines).
Note: Normally, the video gain G will be very close to 1.0. The video gain G can be easily
computed by comparing the white and black levels of the color bar signals on the D2 source
tape with the corresponding white and black levels of the color bar signals on the D2
destination tape (i.e., HRC tape). If sourcewhite and sourceblack are the 100 IRE (white) and
7.5 IRE (black) levels of the SMPTE color bar on the source tape, and destinationwhite and
destinationblack are the corresponding levels on the destination tape, then G is given by

. (5)

Figure 3  D1 Viewable Region for Computing Quality Features
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4. For a video test scene, the time histories of SIS(tn) and SID(tm) are computed as given in
the above steps (i.e., SIS and SID are computed for each frame of the source video and the
destination video in the video test scene).

2.2 Alternate Method of Measurement for Spatial Information of Source Video (SIS) and
Spatial Information of Destination Video (SID)

This section presents an alternate method for computing the spatial information of source
video (SIS) and the spatial information of destination video (SID). This alternate method,
previously proposed in contribution T1A1.5/93-105, is an approximation to the method of
measurement presented in section 2.1 and is designed to run efficiently on real time image
processing hardware. The alternate method presented here is determined by the characteristics
of the ITS real time image processing hardware (documented in contribution T1A1.5/93-105).
Although this alternate method is more computationally efficient, some degradation in
performance may result.

1. Digitally sample the luminance portion of the source video and the destination video as
described in step 1 of section 2.1.

2. As described in step 2 of section 2.1, compute the four images H∗YS(tn), H∗YD(tm),
V∗YS(tn), and V∗YD(tm). These four, 10 bit images are right shifted by 2 bits (divided by
four) before the absolute values are computed. The approximate pseudo-sobel (PSobel)
filtered luminance images are then given by

, (6)

, (7)

where >>2 represents right shifting the images by 2 bits. When an overflow is encountered
in equation (6) and equation (7), the data is clipped at 8 bits, or a value of 255.

3. SIS at time tn and SID at time tm are then computed as given in step 3 of section 2.1, except
that the approximated PSobel images of equation (6) and equation (7) are used.

4. SIS at time tn and SID at time tm (from step 3) are multiplied by 4 to compensate for the
divide by 4 in step 2.

5. For a video test scene, the time histories of SIS(tn) and SID(tm) are computed as given in
the above steps (i.e., SIS and SID are computed for each frame of the source video and the
destination video in the video test scene).

Note: Research conducted by ITS indicates that SIS and SID can be sub-sampled in time by a
factor of five (i.e., only computed for every fifth video frame) without appreciably affecting
the measurement results. Thus, up to five frame times can be used to calculate SIS or SID.

2.3 First Method of Measurement for Temporal Information of Source Video (TIS) and
Temporal Information of Destination Video (TID)

This section presents a method of measurement for the temporal information of the source
video (abbreviated TIS although the following discussion will consider three types, namely,
TImeanS, TIstdS, and TIrmsS) and the temporal information of the destination video (likewise
abbreviated TID). TIS and TID are features that are measured in an identical manner from the
source video and destination video shown in Figure 1. The time histories of TIS and TID
characterize the flow of motion in the source and destination video scene. Objective video
quality parameters that measure temporal impairments in the destination video relative to the

PSobel YS tn( )( ) H∗ YS tn( ) >> 2 V∗ YS tn( ) >> 2+≈

PSobel YD tm( )( ) H∗ YD tm( ) >> 2 V∗ YD tm( ) >> 2+≈
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source video can be computed using TID and TIS (see section 4). This section will describe three
types of temporal information, all of which have been shown to be useful. The first type of
temporal information, denoted TImean, is measured from the mean of the absolute value of the
motion difference image. The second type of temporal information, denoted TIstd, is measured
from the standard deviation (std) of the absolute value of the motion difference image. From
TImean and TIstd, the composite root mean square (rms) of the absolute valued motion
difference image can be computed. This will be denoted TIrms. The preferred method of
measurement for TImean, TIstd, and TIrms is as follows.

1. Digitally sample the luminance portion of the source video and the destination video as
described in step 1 of section 2.1.

2. The components of the temporal information of the source video at time tn (TImeanS(tn),
TIstdS(tn), and TIrmsS(tn)) and the components of the temporal information of the
destination video at time tm (TImeanD(tm), TIstdD(tm), and TIrmsD(tm)) are then computed
as:

(8)

(9)

(10)

and

. (11)

(12)

(13)

The subtraction and absolute value in equation (8), (9), (11), and (12) are performed pixel by
pixel and the mean and standard deviation (std) are computed using the resulting pixels
that are in the viewable region (see Figure 3). G is the gain of the transmission channel or HRC
and is computed as given in section 2.1, step 3.

3. For a video test scene, the time histories of TIrmsS(tn), and TIrmsD(tm) are computed as
given in the above steps (i.e., these values are computed for each frame of source video and
destination video in the video test scene).

2.4 Alternate Method of Measurement for Temporal Information of Source Video (TIS) and
Temporal Information of Destination Video (TID)

This section presents an alternate method for computing TImeanS and TImeanD defined in
section 2.3. This alternate method, previously proposed in contribution T1A1.5/93-105, is an
approximation to the method of measurement presented in section 2.3 and is designed to run

TImeanS tn( ) mean YS tn( ) YS tn 1−( )−=

TIstdS tn( ) std YS tn( ) YS tn 1−( )−=

TIrmsS tn( ) TImeanS tn( )[ ] 2 TIstdS tn( )[ ] 2+=
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mean YD tm( ) YD tm 1−( )−
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efficiently on real time image processing hardware. The alternate method presented here is
determined by the characteristics of the ITS real time image processing hardware (documented
in contribution T1A1.5/93-105). Only TImeanS and TImeanD are considered here since the
standard deviation type of temporal information requires pixel squaring, a very computationally
expensive operation. Although this alternate method is more computationally efficient than that
presented in section 2.3, some degradation in performance may result.

1. Digitally sample the luminance portion of the source video and the destination video as
given in step 1 of section 2.1.

2. Sub-sample the luminance images from step 1 above by a factor of two in both the
horizontal and vertical directions. The sub-sampling is performed such that the first
horizontal line (top line) and the first vertical column (left column) of the image in Figure 3
is retained. The sub-sampled frames of video are 360 horizontal pixels by 243 lines, with a
sub-sampled viewable region of 336 pixels by 224 lines. Let FS(tn) represent a source
luminance frame of video sub-sampled at time tn, and let FD(tm) represent a destination
luminance frame of video sub-sampled at time tm (these sub-sampled frames are actually
NTSC fields sub-sampled by 2 in the horizontal direction).

3. The temporal information of the source video at time tn (TIS(tn)) and the temporal
information of the destination video at time tm (TID(tm)) are then computed as:

(14)

and

(15)

The subtraction and absolute value in equation (14) and (15) are performed pixel by pixel
and the mean is computed using the resulting pixels that are in the sub-sampled viewable
region (see step 2 above). G is the gain of the transmission channel or HRC and is computed
as given in section 2.1, step 3. Equations (14) and (15) may yield values that differ
significantly from equations (8) and (11) if the same motion is not present in both NTSC
fields, such as for film generated NTSC video (see section 5.2), or HRC frame updates that
do not occur on a frame boundary.

4. For a video test scene, the time histories of TImeanS(tn) and TImeanD(tm) are computed as
given in the above steps (i.e., these values are computed for each frame of source video and
destination video in the video test scene).

3 Method for Time Alignment of Source and Destination Features (i.e., Video Delay)

The time histories of the source features (SIS and TIS) and destination features (SID, TID)
must be aligned before the video quality parameters presented in section 4 are computed. The
motion energy in the source and destination video scenes (i.e., the time histories of TIS and TID)
can be used to perform this time alignment. Either the TIrmsS and TIrmsD temporal information
components, or the TImeanS and TImeanD temporal information components can be used for
time alignment. The time alignment may either be performed manually or with an automated
algorithm. This section presents an automated algorithm for performing the time alignment.
This algorithm can be used to measure the video delay of the transmission channel since this
delay is given by the backward time shift of the destination features relative to the source
features when they are properly aligned. The algorithm used for the time alignment is an

TImeanS tn( ) mean FS tn( ) FS tn 1−( )−≈

TImeanD tm( )
mean FD tm( ) FD tm 1−( )−

G
≈
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improved version of the algorithm that was presented in a prior contribution (T1A1.5/92-139).

This section is divided into four sub-sections. Definitions of alignment terms are covered in
section 3.1. A maximum filtering sub-algorithm that filters the TIS and TID waveforms before
they are time aligned is described in section 3.2. Another sub-algorithm for computing the time
alignment based on the minimum standard deviation of the (max filtered TIS - max filtered TID)
difference waveforms is detailed in section 3.3. Finally, a robust alignment algorithm is
described in section 3.4 that utilizes the two sub-algorithms of section 3.2 and section 3.3.

The behavior of the alignment algorithms described here are determined by the values of
several constants (or thresholds). Recommended values for these constants presented in this
document have been determined heuristically.

3.1 Definitions

This section contains a list of definitions for terms that will be used in the description of the
time alignment algorithms (see Figure 4).

Spike: If the current time sample of TI is greater than both the previous time
sample and the following time sample, then a spike is said to have occurred
at the current time.

Spike Height: The spike height is the difference between the current time sample of TI and
the larger of the two adjacent samples.

Scene Cut: Any spike in TIS that has a spike height greater than 15.0 is called a scene cut.

Scene Width: The length (in frames) of the scene portion that is used for time alignment.
[For the T1A1.5 tests, a non-drop frame mode, nine second scene portion
will be 270 frames long.]

Vector: Any time history of TI samples of a length equal to scene width.

Source Vector: A vector of TIS(tn) samples (or max filtered TIS(tn) samples) measured from
the source scene.

Destination Vector: A vector of TID(tm) samples (or max filtered TID(tm) samples) measured from
the destination scene.

Reference Vector: The specific source vector which is measured from the portion of the source
scene that is of interest to the user (specified by the user). [For the T1A1.5
tests, the reference vector is measured from the 270 frame portion of the
source scene that is subjectively viewed.]

Guess Vector: The specific destination vector which forms the user’s best time alignment
guess to the reference vector.

Uncertainty: Uncertainty of the guess vector’s alignment, in frames. The true alignment
must be within ± uncertainty samples from the user’s guess. [The
recommended setting for uncertainty is 60 samples, which allows for an
unknown HRC video delay of 4 seconds if the guess vector is chosen to have
a video delay of 2 seconds.]
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Window: The time alignment of any destination vector that is within ± window samples
from the guess vector can be computed by the alignment subroutines. For
robustness, a ± window of destination vectors around the guess vector are
examined by the summarized alignment algorithm in section 3.4. [The
recommended setting for window is uncertainty/2, or 30 samples.]

Offset: The distance (in frames) between a source vector and the reference vector or
between a destination vector and the guess vector. Offsets may be positive or
negative. A positive offset means that the source vector occurs later in time
than the reference vector (or that the destination vector occurs later in time
than the guess vector).

Max Filtered TID: A maximum filtered version of TID (see section 3.2).

Max Filtered TIS: A maximum filtered version of TIS (see section 3.2).

Smoothed TID: A smoothed, low pass filtered version of TID that can be used to separate
TID spikes of jerky motion from TID samples that do not contain motion. TID
spikes of jerky motion have been eliminated in the smoothed TID. For low bit
rate HRCs, a centered Hanning filter with a filter width of 63 frames works
well provided the HRC transmits at least one frame every 2 seconds. To
properly apply this Hanning filter to a destination vector, at least 32 TID
samples must be available before and after the destination vector.

Fraction Above: Measures the fraction of TID that is on or above the corresponding smoothed
TID. The fraction computation is based on (scene width + 2*window +
2*uncertainty) data points. The fraction above threshhold specifies the
minimum fraction above that must be met before minimum standard
deviation alignment is performed on the resulting max filtered TID and max
filtered TIS waveforms. [A fraction above threshold from 0.60 to 0.90 may be
used; the recommended value is 0.70]
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Figure 4  Definitions of Alignment Terms

uncertaintyuncertainty

TIS
TID spike

scene width
filter width

reference vector
guess vector

TIS scene cut

TID

2
filter width

2

Total Number of Samples Required for Time Alignment

window window

TIS

TID

Max Filtered TIS

Max Filtered TID

Smoothed TID



11

3.2 Description of Maximum Filtering Algorithm

The plot shown in Figure 4 depicts a TID waveform that is typical of a frame repeating
codec (a codec that updates the video less than 30 frames per second). As seen in the figure,
samples of TID that contain motion appear as spikes. These motion spikes, which are visually
perceived as jerky motion, are followed by one or more low or non-motion samples of TID where
frame repetition is occurring. The non-motion samples of TID that correspond to the repeated
video frames do not contain information relevant to alignment. The TID motion spikes, however,
form a shape similar to the TIS plot. The purpose of the maximum filter is to increase the
similarity between the TID and TIS waveforms by replacing the frame repeat samples of TID with
the nearest motion spike samples. After the TID and TIS waveforms are maximum filtered as
described here, an algorithm for computing the time alignment based on the minimum standard
deviation of the (max filtered TIS - max filtered TID) difference waveforms can be applied (section
3.3).

The maximum filter algorithm has three components. One component, fraction above,
measures the fraction of TID that does not contain frame repeats. A second component is a three
wide maximum filter that iteratively increases the fraction above of TID and TIS (TID and TIS are
updated with their maximum filtered versions on each iteration). A third component, the fraction
above threshhold, establishes the minimum threshhold for the fraction above of TID such that
resulting max filtered TID contains sufficiently few frame repeats for alignment to begin.

The first component of the maximum filtering algorithm, fraction above, measures
approximately how many samples of TID are frame repeats and how many samples contain
motion information for alignment. Fraction above estimates the fraction of samples that are not
frame repeats. Fraction above applies a low pass filter to TID to produce the corresponding
smoothed TID waveform. The fraction of TID that lies on or above the corresponding smoothed TID
will increase as the number of frames repeats in TID decreases. The number of frame repeats in
TID will decrease as TID is iteratively replaced with its three wide maximum filtered version.

The second component of the maximum filtering algorithm, a three wide maximum filter,
provides a means of replacing frame repeat samples with the nearest motion spike samples,
thereby raising the frame repeat samples to the level of the surrounding motion-spike curve. To
that end, the three wide maximum filter iteratively replaces TID with TID’, where TID’(tm) is the
maximum of TID(tm-1), TID(tm), and TID(tm+1). Similarly, TIS is iteratively replaced with TIS’.
Repeated application of the three wide maximum filter will spread motion spikes in TID into the
surrounding frame repeats, as well as emphasizing scene cuts in TID and TIS. This three wide
maximum filter has the property that the fraction above for TI’ is greater than the fraction above for
TI.

The third component of the maximum filtering algorithm, the fraction above threshhold,
establishes when the iterative max filtering operation of the three wide maximum filter can stop.
To that end, the three wide maximum filter is applied repeatedly to both TIS and TID until the
fraction above for TID is greater than or equal to the fraction above threshhold. A TID vector with
fraction above greater than the fraction above threshhold contains few frame repeat samples. To
assure this condition is met, the fraction above threshold should be set from 0.60 to 0.90, with 0.70
being the recommended value. Example max filtered TIS and max filtered TID waveforms
produced by the maximum filtering algorithm are depicted in Figure 4.

3.2.1 Pseudo Code

Function max_filter replaces TID and TIS arrays with their maximum filtered versions (i.e.,
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max filtered TID and max filtered TIS). The function max_filter calls functions percent_above() and
three_filter(), which are defined below.

function max_filter (source, destination, source_length, destination_length,
fraction_above_threshhold, filter_width)

source The TIS array numbered from 0 to (source_length - 1).
destination The TID array numbered from 0 to (destination_length - 1).
source_length Length of the TIS array source (scene width + 2*uncertainty +

(filter width - 1) + 2*window).
destination_length Length of the TID array destination (scene width + 2*uncertainty

+ (filter width - 1) + 2*window)
fraction_above_threshhold Specifies the fraction above threshhold.
filter_width Specifies the filter width for smoothed TID, an odd integer.

BEGIN
fraction = fraction_above (destination, destination_length, filter_width)
WHILE (fraction < fraction_above_threshhold) DO
BEGIN

three_filter (source, source_length)
three_filter (destination, destination_length)
fraction = fraction_above (destination, destination_length, filter_width)

END
END

Function fraction_above applies a filter width wide Hanning filter to a TID array and then
computes the number of TID samples which are on or above the resulting smoothed TID. Notice
that the first and last coefficients of the Hanning filter are zero; these coefficients are included for
the sake of clarity.

function fraction_above (destination, length, filter_width)

destination The TID array.
length Length of the TID array destination.
filter_width Specifies the filter width for smoothed TID, an odd integer.

BEGIN

/* N is the size of the Hanning filter, an odd integer > 1 */

N = filter_width
above = 0
frame = (N-1) / 2
WHILE (frame < length - (N-1)/2)
BEGIN
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/* Apply a Hanning filter, centered around the current frame */

col = frame - (N-1) / 2
cnt = 0
han= 0
WHILE (cnt < N) DO
BEGIN

han = han + 1/2 (1 - cos(2π * cnt / (N - 1)) * destination[col]
cnt = cnt + 1
col = col + 1

END

/* Normalize Hanning coefficients to add to one for a unit gain filter */

han = han / ((N-1)/2)

/* Update the number of frames on or above the Hanning filter */

IF (destination[frame] ≥ han) THEN
above = above + 1

frame = frame+1
END
RETURN (above / (length - N + 1))

END

Function three_filter applies an in place, three wide maximum filter to an array. It calls
function maximum(a,b,c), which returns the largest of the three numbers a, b, and c.

Function three_filter (temporal, length)

temporal The array holding the TI samples.
length Length of the array temporal.

BEGIN
frame = 1
overlap = temporal[0]
WHILE (frame < length - 1) DO
BEGIN

max = maximum (overlap, temporal[frame], temporal[frame+1])
overlap = temporal[frame]
temporal[frame] = max
frame = frame + 1

END
END
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3.3 Minimum Standard Deviation Alignment

The minimum standard deviation alignment algorithm compares one max filtered TID
destination vector with (2*uncertainty + 1) different max filtered TIS source vectors. The destination
vector input to the algorithm may be offset from the guess vector by ± window samples. Thus, for a
given destination vector, the source vectors that are used are those vectors offset from the reference
vector by (the destination vector offset ± uncertainty samples). For each source vector, take the
difference between the source vector and the destination vector. Compute the standard deviation of
this difference vector. The source vector with the minimum standard deviation is the best alignment
to the destination vector.

When the standard deviation measure does not yield a clear minimum, the best alignment
is ambiguous. To identify this case, find the source vector with the second smallest standard
deviation. If this source vector (1) is far away from the minimum standard deviation source vector
and, (2) has a standard deviation less than comparable magnitude times the minimum standard
deviation, then alignment is said to be ambiguous. [For low bit rate HRCs, the recommended
setting for far away is five samples (one sixth of a second) and the recommended setting for
comparable magnitude is 1.5.]

3.3.1 Pseudo Code

Function std_align returns (the offset of the source vector that is the minimum standard
deviation alignment to a particular destination vector minus the offset of that destination vector).
Thus, the function returns the direction (+ or -) and the number of samples to shift the TID
waveform so that it is time aligned to the TIS waveform. The function is called with the maximum
filtered versions of TID and TIS (i.e., max filtered TID and max filtered TIS) if the HRC is transmitting
less than 30 frames per second.

Function std_align (source, destination, filter_width, uncertainty, window, scene_width,
d_offset)

source Array that holds the source vectors (contains TIS samples numbered from 0
to (scene width + 2*uncertainty + (filter width - 1) + 2*window - 1).

destination Array that holds the destination vectors (contains TID samples numbered
from 0 to scene width + 2*uncertainty + (filter width - 1) + 2*window - 1).

filter_width Same as filter width defined in section 3.1, an odd integer.
uncertainty Same as uncertainty defined in section 3.1.
window Same as window defined in section 3.1.
scene_width Same as scene width defined in section 3.1.
d_offset Specifies the offset of the particular destination vector within the array

destination to use for alignment. This offset, defined in section 3.1, must fall
within the range of -window to +window, inclusive.

BEGIN
minimum_std = MAXIMUM_POSSIBLE_STANDARD_DEVIATION
second_std = MAXIMUM_POSSIBLE_STANDARD_DEVIATION

/* start is the first element of the destination vector specified by d_offset */

start = (filter_width-1)/2 + uncertainty + window + d_offset
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/* loop is the first element of the source vector currently being examined */

loop = start - uncertainty
WHILE (loop ≤ start+uncertainty) DO
BEGIN

/* Sum difference and difference squared */

frame = 0
total = 0
mean = 0.0
std = 0.0
WHILE (frame < scene_width) DO
BEGIN

total = total + 1
mean = mean + source[frame+loop] - destination[start+frame]
std = std + (source[frame+loop] - destination[start+frame])2

frame = frame + 1
END

/* Approximate standard deviation from sum & sum of squares */

mean = mean / total
std = sqrt (std / total - mean * mean)

/* Update minimum & second smallest standard deviation alignments */

IF (std < minimum_std) THEN
BEGIN

second_std = minimum_std
second_align = minimum_align

minimum_std = std
minimum_align = loop

END
ELSE IF (std < second_std) THEN
BEGIN

second_std = std
second_align = loop

END
END

/* Alignment ambiguous if second smallest is far way and of comparable magnitude */

IF ((|second_align - minimum_align| > 5)
AND (second_std/minimum_std ≤ 1.5)) THEN

RETURN (AMBIGUOUS)
ELSE RETURN (minimum_align - start)

END
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3.4 Alignment Algorithm

The maximum filtering and minimum standard deviation sub-algorithms described in
section 3.2 and section 3.3 can be combined to produce a very robust alignment algorithm. This
alignment algorithm is described in detail below. In summary, the alignment algorithm consists
of three steps. First, the maximum filter described in section 3.2 is applied to the TIS and TID
waveforms. Second, the minimum standard deviation alignment algorithm is computed for
every destination vector that is within ± window of the guess vector. By examining the histogram of
the alignment results from this step, one can determine if the alignment with the most votes is
ambiguous or not. If the alignment is deemed ambiguous, then step three is performed. Ambiguous
alignment can result from step 2 when the max filtered TID waveform is significantly different in
magnitude from the max filtered TIS waveform. Step three performs a square root scaling of the
max filtered TIS and max filtered TID waveforms before repeating the operations of step 2. The
purpose of the square root scaling is to weight TI variations resulting from small motion changes
more than TI variations resulting from large motion changes, thereby increasing the similarity
between the max filtered TIS and max filtered TID waveforms.

The complete alignment algorithm will return the direction (+ or -) and the number of
samples to shift the TID guess vector so that it is time aligned to the TIS reference vector. If TIS(tn=N)
and TID(tm=M) are two corresponding time aligned TIS and TID samples, then the video delay
(dv) is calculated as

. (16)

Step ONE: Apply the maximum filter algorithm in section 3.2 to the TIS and TID
waveforms. This step produces max filtered TIS and max filtered TID.

Step TWO: For every destination vector from -window before the guess vector to +window
after the guess vector, run the minimum standard deviation alignment algorithm in section 3.3.
Tally the returned alignments as votes for the true alignment, discarding individual ambiguous
alignment results that are returned from the minimum standard deviation alignment algorithm.
The alignment which received the most votes is called the best alignment.

There are three conditions under which the best alignment from step two is still considered
to be ambiguous. If any of these three conditions are detected, then the minimum standard
deviation results from this step are discarded and step three is performed. The first condition is if
the best alignment receives less votes than the voting threshhold times the 2*window possible votes.
[For low bit rate HRCs, the recommended setting for voting threshold is 0.20 or 20%.] The second
condition is if the best alignment was +uncertainty or -uncertainty, which is beyond the range of an
acceptable alignment. The third condition is if plausible alternate alignments (other than best
alignment) are detected. An alternate alignment is detected if it received more than comparable votes
times the number of votes that the best alignment received and if it is far away from the best
alignment. [For low bit rate HRCs, the recommended setting for comparable votes is 0.5 and the
recommended setting for far away is 5 video frames.]

Step THREE: Take the square root of max filtered TIS and max filtered TID. Then, for every
destination vector starting at -window before the guess vector to +window after the guess vector, run
the minimum standard deviation alignment algorithm in section 3.3. Tally the returned
alignments as votes for the true alignment, discarding ambiguous alignment results. Return the
alignment that received the most votes as the best alignment. However, if the best alignment is
+uncertainty or -uncertainty, then alignment remains ambiguous.

dv tM tN−=
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3.4.1 Pseudo Code

Step ONE

max_filter (source, destination,
scene_width + 2*window + 2*uncertainty + (filter_width - 1),
scene_width + 2*window + 2*uncertainty + (filter_width - 1),
fraction_above_threshhold, filter_width)

Step TWO

/* Initialize the votes for each alignment to zero */

offset = - uncertainty
WHILE (offset ≤ uncertainty) DO
BEGIN

vote[offset] = 0
offset = offset + 1

END

/* Compute alignment for different destination vectors; tally results*/

loop = - window
WHILE (loop ≤ window) DO
BEGIN

offset = std_align (source, destination, filter_width, uncertainty, window, scene_width,
loop)

IF (offset ≠ AMBIGUOUS) THEN
vote[offset] = vote[offset] + 1

loop = loop + 1
END

/* Find the best alignment */

best = - uncertainty
loop = - uncertainty
WHILE (loop ≤ uncertainty) DO
BEGIN

IF (vote[loop] > vote[best]) THEN
best = loop

loop = loop + 1
END

/* alternate alignment exists if second best has comparable votes and is far away */

loop = - uncertainty
alternate_exists = FALSE
WHILE (loop ≤ uncertainty) DO
BEGIN

IF (vote[loop]/vote[best] ≥ 0.5 AND |loop-best| > 5) THEN
alternate_exists = TRUE

END
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/* Stop if no alternatives exist & the best alignment received voting threshhold votes */

IF ((alternate_exists ≡ FALSE) AND (vote[best] > 0.20 * (2*window+1))
AND (best ≠ uncertainty) AND (best ≠ -uncertainty)) THEN

RETURN (best)

Step THREE

/* Initialize the votes for each alignment to zero */

offset = - uncertainty
WHILE (offset ≤ uncertainty) DO
BEGIN

vote[offset] = 0
offset = offset + 1

END

/* Apply square root function to max filtered TIS and max filtered TID */

loop = 0
WHILE (loop < scene_width + 2*window + 2*uncertainty + (filter_width-1)) DO
BEGIN

source[loop] = sqrt (source[loop])
destination[loop] = sqrt (destination[loop])
loop = loop + 1

END

/* Compute alignment for different destination vectors; tally results*/

loop = - window
WHILE (loop ≤ window) DO
BEGIN

offset = std_align (source, destination, filter_width, uncertainty, window, scene_width,
loop)

IF (offset ≠ AMBIGUOUS) THEN
vote[offset] = vote[offset] + 1

loop = loop + 1
END

/* Find the best alignment */

best = - uncertainty
loop = - uncertainty
WHILE (loop ≤ uncertainty) DO
BEGIN

IF (vote[loop] > vote[best]) THEN
best = loop

loop = loop + 1
END
IF (best ≠ uncertainty) AND (best ≠ -uncertainty)) THEN

RETURN (best)
ELSE RETURN(AMBIGUOUS)
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4 Methods for Computing Video Quality Parameters

The time histories of the source features (SIS(tn), TIS(tn)) and destination features (SID(tm),
TID(tm)), are first time aligned, either manually or by the automated method presented in section
3. This time alignment will determine the video delay (dv) between the destination features and
the source features. Hence, for all parameters computed in this section, the time indices on the
destination features (tm) are set equal to tn + dv, i.e.

. (17)

In describing the video quality parameters, the subscript time will be used extensively.
When a function is subscripted by time (such as the root mean square function, denoted
rmstime(•)), this means that the function is applied using the time history of the argument values.
This time history will include that portion of the scene-HRC combination that is subjectively
viewed (e.g., for the TIS and TID values, this is given by the reference vector and the corresponding
time aligned destination vector, see section 3).

For quality parameters that are based on the time histories of TIS and TID (parameters P1 to
P6, P10, and P11 described below), the preferred component of TI to use is the root mean square
component (TIrmsS and TIrmsD, measured as given in section 2.3). The computationally efficient
mean component of TI (TImeanS and TImeanD, measured as given in section 2.4) may also be
used. However, use of the mean component of TI could result in some degradation in
performance. Similarly, for quality parameters that are based on the time histories of SIS and SID
(parameters P7 to P9), the preferred method of measurement is given in section 2.1 while a
computationally efficient alternative is given in section 2.2.

All of the parameters have been designed to measure perceived impairments. Therefore,
the values of the parameters range from zero (for no impairment) to some positive number.

4.1 P1: Max of TI Ratio

One TI comparison function that has proven useful is the log10 ratio of the quantity TID
divided by TIS. The instantaneous value of TI Ratio (tn) is defined as

. (18)

When TI ratio (tn) is positive, there is more temporal information in the destination than the
source (i.e., TID(tn+dv) > TIS(tn)). This condition can result from impairments such as added
noise, jerky motion, and error blocks. When TI ratio (tn) is negative, there is less temporal
information in the destination than the source (i.e., TID(tn+dv) < TIS(tn)). This condition results
when the HRC is repeating frames (see section 4.10).

Parameter P1 measures the maximum amount of added temporal information, where the
maximum is computed over the time history of the video scene. Prior contributions have
described versions of this parameter as MAFNLR (T1A1.5/93-60), and m3 (T1A1.5/93-32,
T1A1.5/92-112). Parameter P1 is given by

. (19)

tm tn dv+=

TI ratio tn( ) 10log
TID tn dv+( )

TIS tn( ) 
 =

P1 max maxtime TI ratio tn( )( ) 0,[ ]=
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4.2 P2: Root Mean Square (RMS) of TI Ratio

The root mean square (rms) of TI ratio (tn) provides an average measure of how different
the motion in the destination video is from the source video. Parameter P2 is given by

. (20)

4.3 P3: Max - Min of TI Ratio

Parameter P3 is similar to P1, except that lost motion energy is also considered. Motion
energy is lost when the HRC performs frame repetition (see section 4.10). A version of this
parameter was described in a paper presented at the 1993 IEEE Pacific Rim Conference on
Communications, Computers, and Signal Processing (Stephen Voran and Stephen Wolf, “An
Objective Technique for Assessing Video Impairments”). Parameter P3 is given by

. (21)

4.4 P4: Positive Mean - Negative Mean of TI Ratio

This parameter is a form of parameter P3 that is not as sensitive to the TI ratio (tn) extrema.
Parameter P4 is given by

, (22)

where posmean is the mean computed as the sum of the positive values of TI ratio (tn) divided
by the number of positive values, and negmean is the mean computed as the sum of the negative
values of TI ratio (tn) divided by the number of negative values. If there are no positive values,
posmean = 0 and if there are no negative values, negmean = 0.

4.5 P5: Root Mean Square (RMS) of TI Error Ratio

In addition to TI ratio (tn), TI error ratio (tn) is another comparison function that has
proven useful. TI error ratio (tn) is the ratio of the error in TI between the source and destination,
normalized by the source. The instantaneous value of TI error ratio (tn) is defined as:

(23)

Parameter P5 is similar to parameter P2, except the root mean square (rms) of TI error ratio (tn) is
computed. Parameter P5 is given by

. (24)

4.6 P6: Root Mean Square (RMS) of Positive Part of TI Error Ratio (Lost Motion Energy)

TI error ratio (tn) is positive when the destination video has lost temporal information,
such as during frame repetition by the HRC. Thus, the root mean square (rms) of the positive
part of TI error ratio (tn) provides a measure of how much frame repetition is being performed
by the HRC. This parameter P6 is given by

, (25)

P2 rmstime TI ratio tn( )[ ]=

P3 max maxtime TI ratio tn( )( ) 0,[ ] min mintime TI ratio tn( )( ) 0,[ ]−=

P4 posmeantime TI ratio tn( )[ ] negmeantime TI ratio tn( )[ ]−=

TI error ratio tn( )
TIS tn( ) TID tn dv+( )−

TIS tn( )
=

P5 rmstime TI error ratio tn( )[ ]=

P6 rmstime max TI error ratio tn( ) 0,( )[ ]=
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where max (TI error ratio (tn), 0) performs a frame by frame maximum of TI error ratio (tn) with
the zero value. Parameter P6 contains information that is similar to parameter m2 presented in
prior contributions (T1A1.5/93-32, T1A1.5/92-112).

4.7 P7: Max Absolute Value of SI Error Ratio

One SI comparison function that has proven useful is SI error ratio (tn), defined as the ratio
of the error in SI between the source and destination, normalized by the source. The
instantaneous value of SI error ratio (tn) is defined as

. (26)

When SI error ratio (tn) is positive, there is less spatial information in the destination than the
source (i.e., SID(tn+dv) < SIS(tn)). This condition can result from impairments such as blurring.
When SI error ratio (tn) is negative, there is more spatial information in the destination than the
source (i.e., SID(tn+dv) > SIS(tn)). This condition can result from impairments such as added
noise, edges, or blocks.

Parameter P7 measures the maximum absolute value of SI error ratio (tn). Parameter P7 is
identical to parameter m1 in prior contribution T1Q1.5/92-112. Parameter P7 is given by

. (27)

4.8 P8: Root Mean Square (RMS) of SI Error Ratio

The root mean square (rms) of SI error ratio (tn) provides an average measure of the
difference in spatial information between the source and destination video. Parameter P8 is given
by

. (28)

Parameter P8 is identical, except for a scaling constant, to parameter m1 presented in prior
contributions (T1A1.5/93-32, T1A1.5/92-112).

4.9 P9: Alternate form of P8

Parameter P9 is a parameter that has been shown to have similar information to parameter
P8. Parameter P9 is identical, except for a scaling constant, to parameter m1’ presented in prior
contribution (T1A1.5/92-135) and parameter AFCEE presented in contribution (T1A1.5/93-60).
Parameter P9 is given by

(29)

4.10 P10: Frame Repeat Rate

The time history of TID visually displays frame repeats as low or non-motion samples

SI error ratio tn( )
SIS tn( ) SID tn dv+( )−

SIS tn( )
=

P7 maxtime SI error ratio tn( )( )=

P8 rmstime SI error ratio tn( )[ ]=

P9
rmstime SIS tn( )[ ] rmstime SID tn dv+( )[ ]−

rmstime SIS tn( )[ ]
=
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between motion spikes (see Figure 4). The frame repeat rate for a portion of a video scene can be
computed by finding two motion spikes in that portion of the video scene and then counting the
number of low or non-motion samples between these two motion spikes. The frame repeat rate,
defined as this number of low or non-motion samples plus one (so that one motion spike is
included) would give a value of 1 for 30 frames per second, a value of 2 for 15 frames per second,
etc.

In general, the frame repeat rate for low bit rate HRCs is adaptive and changes with time.
Therefore, it is desirable to compute a composite frame repeat rate for a video scene. Prior
contribution T1A1.5/92-138 proposed the Average Frame Rate (AFR) for this composite measure.
However, research conducted by ITS indicates that a composite frame repeat rate that is at the 75%
value (i.e., the point where 75% of the frame repeat rates in the scene are below and 25% are above)
yields a quality parameter that more closely correlates with subjective quality. This research
further indicates that the logarithm of this 75% value should be used as the quality parameter.
This section presents an automated algorithm for computing this 75% frame repeat rate
parameter.

4.10.1 Definitions

The following definitions will be required when describing how to compute the composite
frame repeat rate (the reader may refer to Figure 4 and Figure 5).

Spike: If the current time sample of TI is greater than both the previous time
sample and the following time sample, then a spike is said to have occurred
at the current time.

Spike Height: The spike height is the difference between the current time sample of TI and
the larger of the two adjacent samples.

Scene Cut: Any spike in TIS that has a spike height greater than 15.0 is called a scene cut.

Frame Repeat Spike: A motion spike in the TID waveform that results from frame repeating by
the HRC.

Frame Repeat Delta: The distance between two consecutive frame repeat spikes, equal to the
number of intervening TID samples plus one (see Figure 5).

Source Variation: A threshold used for detecting frame repeat spikes in the TID waveform.
Defined as the maximum spike height in the TIS waveform, excluding any
scene cuts, multiplied by a small increase. The purpose of increasing the
threshold is to decrease false detections of frame repeat spikes in the TID
waveform. [The recommended setting for small increase is 1.2]

Maximum Repeat Delta:The largest frame repeat delta expected. [For the T1A1.5 tests, the
recommended setting for maximum repeat delta is 60 to accommodate low
bit rate HRCs that transmit only one frame every 2 seconds.]

Min Number Deltas: The minimum number of frame repeat deltas in the video scene that should
be detected if the HRC is repeating frames at the maximum repeat delta rate.
[For the T1A1.5 tests, the recommended value for min number deltas is 4
provided the maximum repeat delta is set to 60 since 270/60 = 4, when
rounded down to the nearest integer.]
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Figure 5  Definitions of Frame Repeat Rate Terms

4.10.2 Frame Repeat Rate Algorithm

The first step in the algorithm is to differentiate between frame repeat spikes in the TID
waveform and spikes caused by motion variations in the source scene. Figure 4 contains an
example plot of TIS and TID waveforms. Notice that TIS contains a number of spikes. The largest
of these, having a height greater than 15.0, is a scene cut. The other spikes are motion variations in
the source scene. Any spike in TID of comparable size to these source scene motion variations is
not considered a frame repeat spike. Therefore, the source variation is used as a threshhold for
detecting frame repeat spikes. The source variation is the spike height of the largest spike in TIS,
excluding scene cuts, multiplied by a small increase. By increasing the threshold slightly, the chance
of falsely detecting frame repeat spikes is reduced. [The recommended setting for small increase is
1.2, which is a 20% increase in the threshhold.]

As shown in Figure 5, two frame repeat spikes in TID (herein called spike 1 and spike 2) are
declared if all of the following three conditions are met; (1) spike 1 and spike 2 have spike heights
greater than the source variation, (2) there are no spikes with spike heights greater than the source
variation between spike 1 and spike 2, and (3) all intervening TID samples between spike 1 and spike
2 have values that are at least source variation below the smaller of spike height 1 and spike height 2.
Whenever the above three conditions are met in the TID time history, the frame repeat delta is
computed and saved to an array. A counter keeps track of how many frame repeat deltas are saved.
The array of frame repeat deltas is rank sorted from low to high.

The frame repeat rate is set equal to 1 if (1) the number of frame repeat deltas found in the
time history of TID is less than the number of scene cuts in the time history of TIS plus the min
number deltas for a video scene of this scene width, or if (2) the 75% frame repeat delta value of the
rank sorted array is above the maximum repeat delta. Otherwise, the frame repeat rate is set equal
to the 75% frame repeat delta value of the rank sorted array.

The log, base ten, of the frame repeat rate is the quality parameter.

4.10.3 Pseudo Code

Function repeat_rate computes the log, base 10, of the 75% frame repeat delta value of a
destination vector that is time aligned to the reference vector. The 75% frame repeat delta value is an

TID waveform

Intervening TID samples are source variation

2 frame repeat spikes

below the smaller frame repeat spike height
frame repeat delta

of seven

source variation

source variation
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integer ranging between one and the maximum repeat delta.

Function repeat_rate (source, destination, scene_width, maximum_repeat_delta,
min_number_deltas)

source Contains the reference vector. Array elements are numbered from
zero to (scene_width - 1).

destination Contains the destination vector which best aligns to the reference
vector in array source. Array elements are numbered zero to
(scene_width - 1).

scene_width Same as the scene width defined in section 3.1.
maximum_repeat_delta Same as the maximum repeat delta defined in section 4.10.1.
min_number_deltas Same as the min number deltas defined in section 4.10.1.

/* Compute source variation using small increase = 1.2; tally number of scene cuts in TIS */

source_variation = 0.0
scene_cuts = 0
frame = 1
WHILE (frame ≤ scene_width-2) DO
BEGIN

IF (source[frame+1] > source[frame-1]) THEN
height = source[frame] - source[frame+1]

ELSE height = source[frame] - source[frame-1]
IF (height > 15.0) THEN

scene_cuts = scene_cuts + 1
ELSE IF (height > source_variation) THEN

source_variation = height
frame = frame + 1

END
source_variation = source_variation * 1.2

/* num_repeats is the number of frame repeat deltas found so far */

num_repeats = 0

/* prev_spike is the array element of the last frame repeat spike found. */

prev_spike = 0

/* Loop through all frames looking for frame repeat spikes */

frame = 1
WHILE (frame ≤ scene_width-2) DO
BEGIN

/* Assume this frame is a spike & compute the spike height.*/

IF (destination [frame+1] > destination [frame-1])THEN
height = destination [frame] - destination [frame+1]

ELSE height = destination [frame] - destination [frame-1]
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/* Consider spikes with spike heights greater than source variation */

IF (height > source_variation) THEN
BEGIN

/* First time, initialize prev_spike as this frame */

IF (prev_spike ≡ 0) THEN
prev_spike = frame

/* Otherwise, check whether the prev_spike and this spike are frame repeat spikes */

ELSE BEGIN

/* Compute threshhold using prev_spike, this spike, & source variation */

IF (destination[prev_spike] < destination[frame]) THEN
threshhold = destination[prev_spike] - source_variation

ELSE threshhold = destination[frame] - source_variation
between = prev_spike + 1
is_a_repeat = TRUE
WHILE (between < frame) DO
BEGIN

IF (destination[between] > threshhold)
is_a_repeat = FALSE

between = between + 1
END

/* Array delta holds the num_repeats frame repeat deltas found. */

IF (is_a_repeat ≡ TRUE)
BEGIN

num_repeats = num_repeats + 1
delta[num_repeats] = frame - prev_spike

END

/* Update the location of the prev_spike. */

prev_spike = frame
END

END
frame = frame + 1

END

/* Sort array delta from smallest at delta[1] to largest at delta[num_repeats] */

sort (delta)

/* Repeat rate is one if there were too few frame repeat deltas found. Return log10(1.0) = 0 */

IF (num_repeats ≤ scene_cuts + min_number_deltas) THEN
RETURN (0)
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/* Repeat rate is one if the 75% delta value is unreasonably large. Return log10(1.0) = 0 */

ELSE IF (delta [num_repeats * 0.75] > maximum_repeat_delta)
RETURN (0)

/* Otherwise, return log10 of the 75% delta value */

ELSE RETURN (log10 (delta [num_repeats * 0.75]))

4.11 P11: Max TI Spike Increase, Masking Scene Cuts

Both TID and TIS contain spikes. Some of these are scene cuts, some are frame repeat spikes,
and some result from natural motion variations in the video scene. The increase in non scene cut
spike height from TIS to TID determines the value of this quality measure. Frames near scene cuts
are not used because relatively large motion variations can occur within a few frames of a scene
cut and be relatively unnoticed due to the masking effects of the eye and brain. [For parameter P11
described below, frames from 5 before to 10 after a scene cut are masked.]

To compute P11, first find all spikes in the TIS and TID waveforms. Next, discard all TIS and
TID spikes from five frames before to ten frames after each scene cut. This will eliminate most of the
scene cut effects from the measure. From the remaining spikes, find the highest TID spike and the
highest TIS spike. Take the spike height of the tallest TID spike minus the spike height of the tallest TIS
spike. Set this difference to zero if it falls below zero, and return log10 (difference + 1).

4.11.1 Pseudo Code

Function spike_increase computes the log10 of the largest increase in temporal motion
spikes between the reference vector and the time aligned destination vector.

Function spike_increase (source, destination, scene_width)

source Contains the reference vector. Array elements are numbered from zero to
(scene_width - 1).

destination Contains the destination vector which best aligns to the reference vector in
array source. Array elements are numbered zero to (scene_width - 1).

scene_width Same as the scene width defined in section 3.1.

BEGIN

/* is_a_scene_cut is a boolean array, valid from 1 to (scene width - 2); marks scene cuts */

frame = 1
WHILE (frame ≤ scene_width - 2) DO
BEGIN

is_a_scene_cut [frame] = FALSE
frame = frame + 1

END

/* Find the location of all scene cuts. Extend scene cut mask 5 before, 10 after */

frame = 1
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WHILE (frame ≤ scene_width - 2) DO
BEGIN

IF (source [frame+1] > source [frame-1]) THEN
height = source [frame] - source [frame+1]

ELSE height = source [frame] - source [frame-1]
IF (height > 15.0) THEN
BEGIN

cnt = frame - 5
WHILE (cnt ≤ frame + 10) DO
BEGIN

IF (1 ≤ cnt AND cnt ≤ scene_width - 2) THEN
is_a_scene_cut [cnt] = TRUE

cnt = cnt + 1
END

END
frame = frame + 1

END

/* Find maximum reference vector spike & maximum destination vector spike */

max_source_spike = 0.0
max_destination_spike = 0.0
frame = 1
WHILE (frame ≤ scene_width-2) DO
BEGIN

IF (is_a_scene_cut [frame] ≡ FALSE) THEN
BEGIN

IF (source [frame+1] > source [frame-1]) THEN
height = source [frame] - source [frame+1]

ELSE height = source [frame] - source [frame-1]
IF (height > max_source_spike) THEN

max_source_spike = height

IF (destination [frame+1] > destination [frame-1]) THEN
height = destination [frame] - destination [frame+1]

ELSE height = destination [frame] - destination [frame-1]
IF (height > max_destination_spike) THEN

max_destination_spike = height
END
frame = frame + 1

END

/* Return log10 of the spike difference plus one; minimum zero. */

IF (max_destination_spike > max_source_spike) THEN
RETURN (log10 (max_destination_spike - max_source_spike + 1.0))

ELSE RETURN (0.0)
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5 Extensions to the Video Quality Parameters

Several extensions have been made to the basic ITS video quality parameters. These
extensions, described in this section, seem to provide significant additional information about
HRC performance. However, we are not at this time recommending that these extensions be
included in the first round of objective performance parameter testing. The extensions are
described in this contribution to inform committee T1A1.5 of ongoing video quality research
efforts at ITS.

5.1 Scene Cut Masking

A number of psychological studies have been performed that demonstrate that the eye and
brain have trouble perceiving scene detail immediately before and after a scene cut (for instance,
see William E. Glenn and Karen G. Glenn, “High Definition Television Compatible Transmission
System,” IEEE Transactions on Broadcasting, Vol. BC-33, No. 4, December, 1987). This can be
accommodated in the video quality measurements by introducing scene masking, where the
objective video quality measurements for the video frames around a scene cut are weighted less
than the objective video quality measurements for other video frames that are not around a scene
cut. This technique was, in fact, used for parameter P11 in section 4.11.

5.2 Film Generated NTSC Video

The 3-2 pulldown process used to convert 24 frames per second (fps) film to 30 fps NTSC
video causes every 5th field of NTSC video to have zero motion. For film generated NTSC video,
this is readily observed by plotting the time history of TImean as measured in section 2.4. In
some cases, it may be desirable to pre-filter the TIS and TID waveforms to remove the effects of 3-
2 pulldown before the objective video quality parameters in section 4 are computed. This is an
issue for further study.

5.3 Sub-regional Video Quality Measurements

Research at ITS has revealed that additional information can be obtained about the HRC
performance if the objective video quality parameters are measured using sub-regions that are
smaller than the viewable region (in Figure 3). Such was the case for the MALNLR parameter
presented in T1A1.5/93-60. There are three types of sub-regions that provide additional useful
information. They are:

1. Minimum motion sub-region - the video quality parameters in section 4 are measured
using the minimum motion sub-region. This provides a measurement of impairments that
are more noticable on the stationary portion of the video scene (e.g., noise, error blocks).

2. Maximum motion sub-region - the video quality parameters in section 4 are measured
using the maximum motion sub-region. This provides a measurement of impairments that
are more noticable on the moving portion of the video scene (e.g., blurring of moving lips,
eyes, or head).

3. Maximum spatial detail sub-region - the video quality parameters in section 4 are
measured using the maximum spatial detail sub-region. This provides a measurement of
impairments that are more noticable on the spatially detailed portion of the video scene,
regardless of whether this detailed portion is moving or not (e.g., blurring of details on a
map).

To see how the above three types of parameters are computed, a simple example will be
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provided. This example is shown in Figure 6. Here the viewable region of Figure 3 has been sub-
divided into 6 smaller sub-regions. These are denoted 1 through 6 in the figure. For each sub-
region shown in the figure, compute the temporal information and spatial information
measurements that have been presented in this contribution. These will be denoted TISj(tn),
TIDj(tn+dv), SISj(tn), and SIDj(tn+dv), where j denotes the sub-region number (j = 1 through 6) and
the rest of the notation is as previously defined. The algorithms for finding the above three sub-
regions as a function of time tn are then simply

1. Minimum motion sub-region - the sub-region j such that TISj(tn) < TISk(tn), for all k≠j.

2. Maximum motion sub-region - the sub-region j such that TISj(tn) > TISk(tn), for all k≠j.

3. Maximum spatial detail sub-region - the sub-region j such that SISj(tn) > SISk(tn), for all
k≠j.

The video quality parameters of section 4 can then be computed using the above time varying
sub-regions of the source and destination video frames.

Figure 6  Example Showing how the Viewable Region can be Sub-divided
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