

Politecnico di Torino

On the Training of AIOs for a Wider Range of Applications

LOHIC FOTIO TIOTSOP **JEG-HYBRID GROUP**

VQEG_JEG-Hybrid_2022_219

L Fotio

VQEG MEETING: DEC 2022

- AIO: deep neural network (DNN) trained to mimic the quality perception of an individual subject;
- The AIOs output a five-class probability distribution on the ACR scale;
- Aim and Scope: designing media processing systems that account for the characteristics of the targeted audience.

Training DNNs in Media Quality Assessment

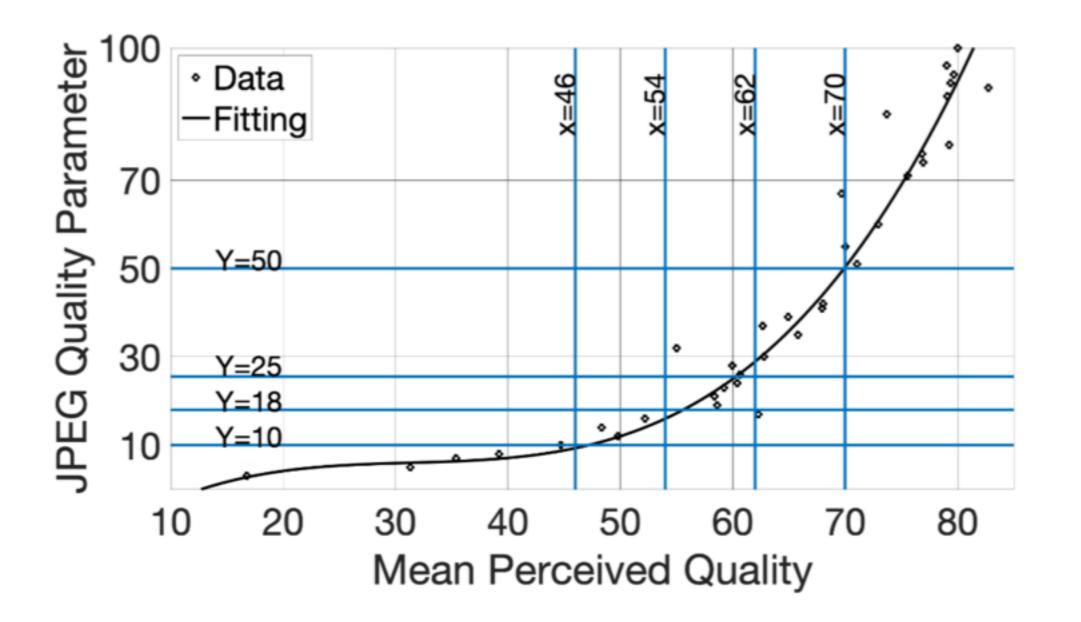
- Current subjectively annotated datasets do not allow an effective training of DNNs for **MOS prediction** [1];
- Available datasets for the training of AIOs are even more limited in size;
- The classical transfer learning concept is not a satisfactory solution.

6, pp. 130-141, Nov. 2017, doi: 10.1109/MSP.2017.2736018.

[1] J. Kim, H. Zeng, D. Ghadiyaram, S. Lee, L. Zhang and A. C. Bovik, "Deep Convolutional Neural Models for Picture-Quality Prediction: Challenges and Solutions to Data-Driven Image Quality Assessment," in IEEE Signal Processing Magazine, vol. 34, no.

- An idea already explored in media quality assessment by some authors;
- First step: create a large scale synthetically annotated dataset, and use it to train a DNN to extract generic perceptual features;
- Second step: Refine the weights of the trained DNN by performing an additional training on a subjectively annotated dataset.
- How to obtain reasonable synthetic labels?
- Previous authors used full reference metrics; we proceed differently.

JPEG Compression Only Case (JPEGResNet50)



The analysis was made on the first release of the LIVE-IQA dataset.

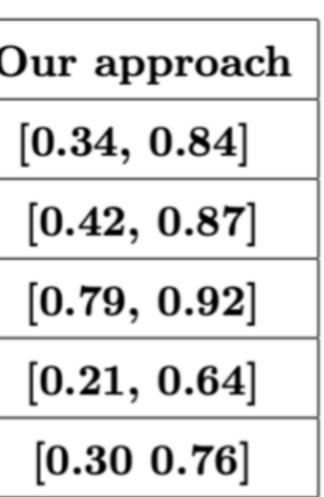
JPEG Quality parameter interval	Opinion score	Image label	
[2, 10]	1	Bad	
[11, 18]	2	Poor	
[19, 25]	3	Fair	
[26, 50]	4	Good	
[51, 100]	5	Excellent	

Effectiveness of the Two-Steps Transfer Learning Approach

Range of correlation coefficients between the ratings of the trained AIOs and those of actual observers:

Datasets	TLR	FW-TLR	0
LIVE-MD-ph1 (T)	[0.09, 0.70]	[0.00, 0.69]	
LIVE-IQA-r1-ph1	[-0.19, 0.27]	$[-0.28 \ 0.32]$	
LIVE-IQA-r1-ph2	$[-0.37 \ 0.60]$	[-0.33, 0.46]	
LIVE-MD-ph2	[0.04, 0.67]	[-0.05, 0.63]	
MICT	$[-0.23 \ 0.36]$	[-0.28, 0.50]	

 However, by considering JPEG compression only, the trained AIOs are of limited use for real applications.



- **TLR**: single Transfer Learning using the ResNet50
- FW-TLR: Freeze 50% of the Weights of the **Resnet50 and perform** single Transfer learning
- Our approach: 2-step transfer learning

Proposed Generic Algorithm to Compute Parameter Intervals

• Generic algorithm suitable for any distortion type controlled by a single parameter

Algorithm 2 Proposed Algorithm

Inptut: $\{d_i\}, \{MOS_i\}$ while $d \in \{d_i\}$ do $I_d \leftarrow \{i \parallel d_i = d\}$ $MOS_{avg}(d) \leftarrow avg\{M$ end while $g(.) \leftarrow \arg\min_{q(.)} \left(\sum_{i} (g(d_i) - MOS_{avg}(d_i))^2 \right)$ $q_{avg}^{max} \leftarrow Percentile_{0.975} \{MOS_{avg}(d_i)\}$ $q_{avg}^{min} \leftarrow Percentile_{0.025} \{MOS_{avg}(d_i)\}$ $[I_{q}^{1}, I_{q}^{2}, \dots, I_{q}^{5}] = Split_{5}(q_{ava}^{min}, q_{ava}^{max})$ $I_d^k = g^{-1}(I_a^k) \quad k = 1, 2, \dots, 5$ **Ouptut:** $[I_d^1, I_d^2, \dots, I_d^5]$

VQEG JEG-Hybrid 2022 219

$$\{OS_i \mid \mid i \in I_d\}$$

Using the Algorithm vs Full Reference VQMs Labelling

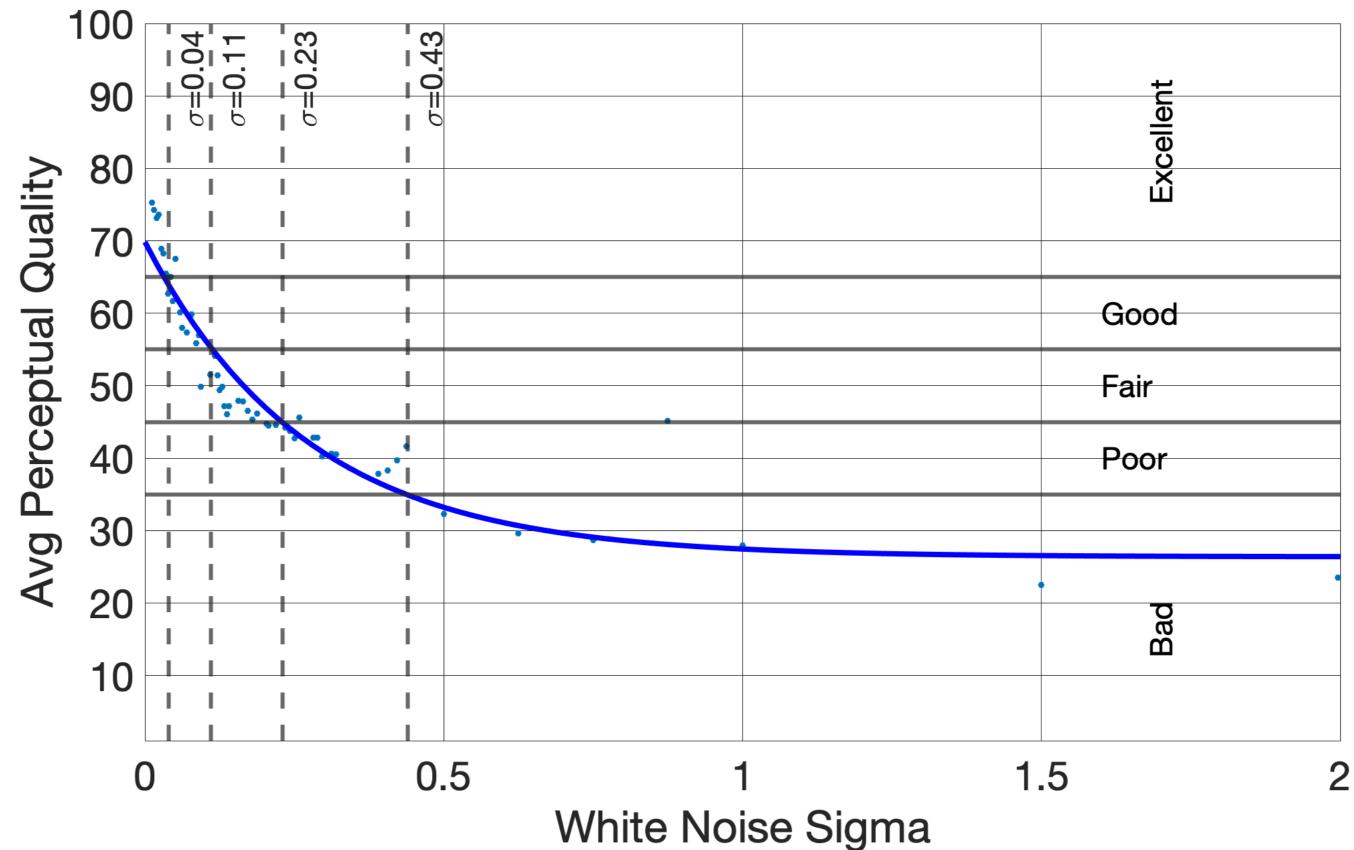
- Advantage: Not upper-bounding the performance of the network trained at the first stage by that of a specific full reference metric;
- Disadvantage: Full reference metrics probably better account for the characteristics of the stimuli.

JPEG to the Average Perceived Quality



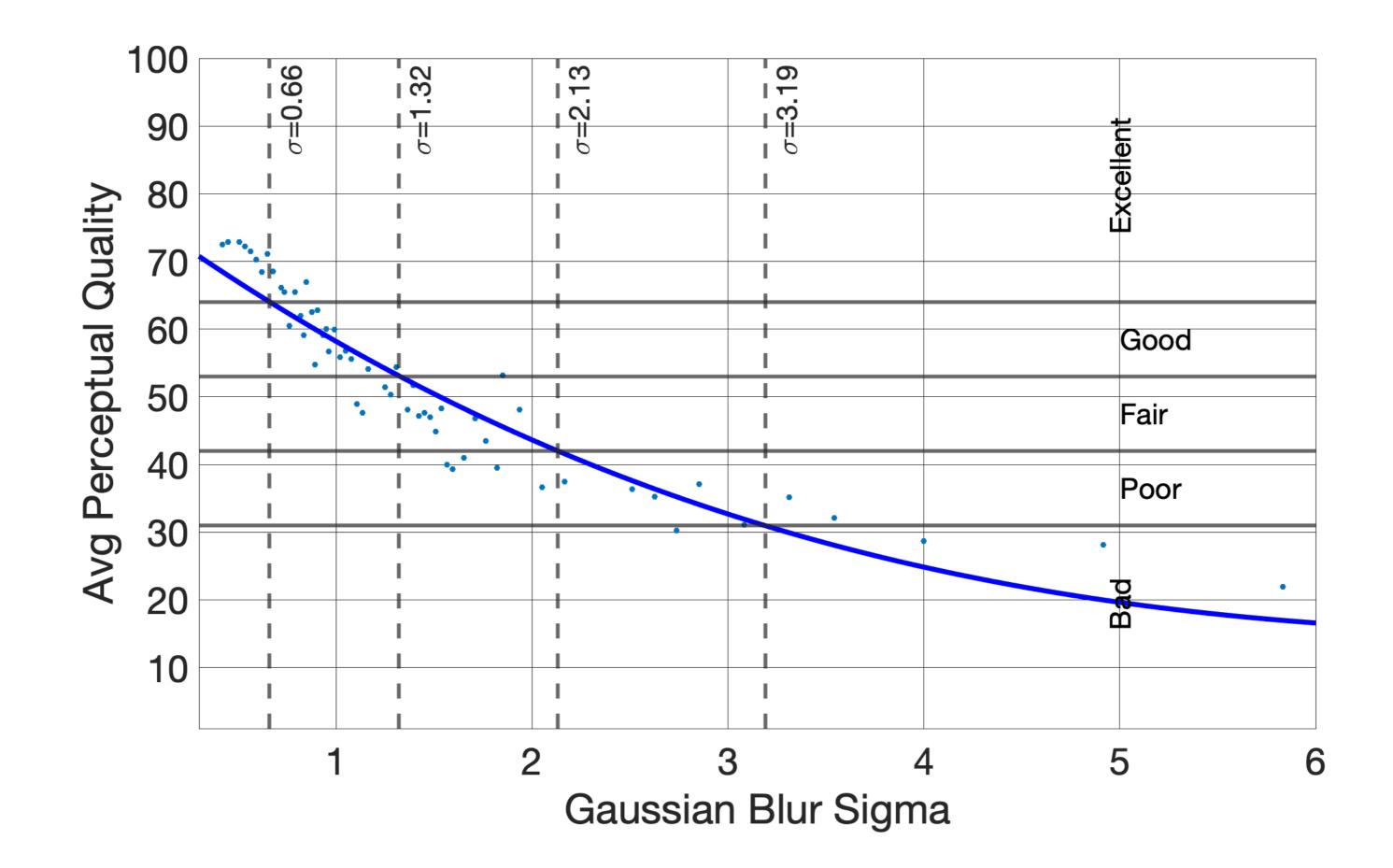
VQEG_JEG-Hybrid_2022_219

White Noise to the Average Perceived Quality



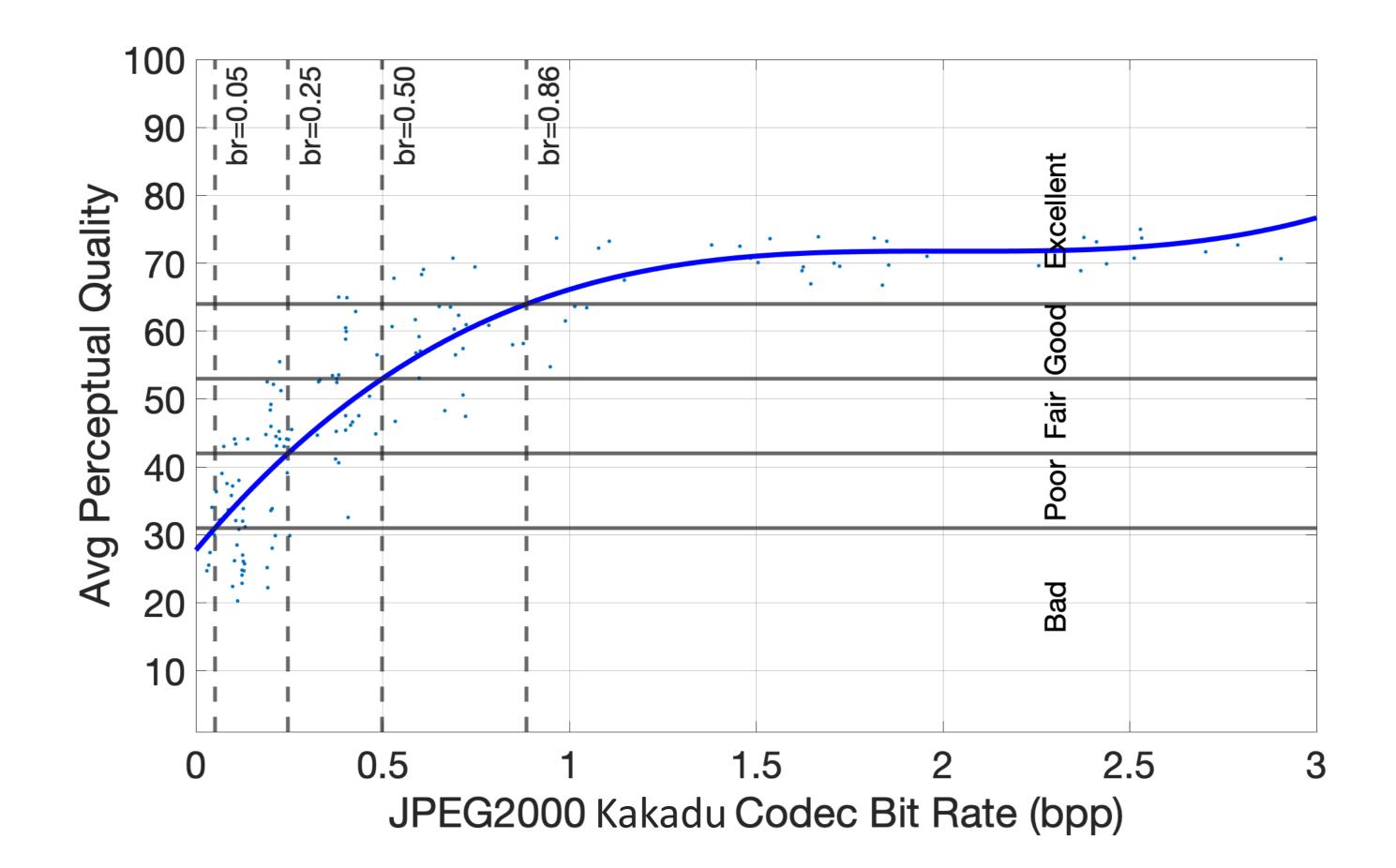
L Fotio

Gaussian Blur to the Average Perceived Quality



VQEG_JEG-Hybrid_2022_219

JPEG2K to the Average Perceived Quality



L Fotio

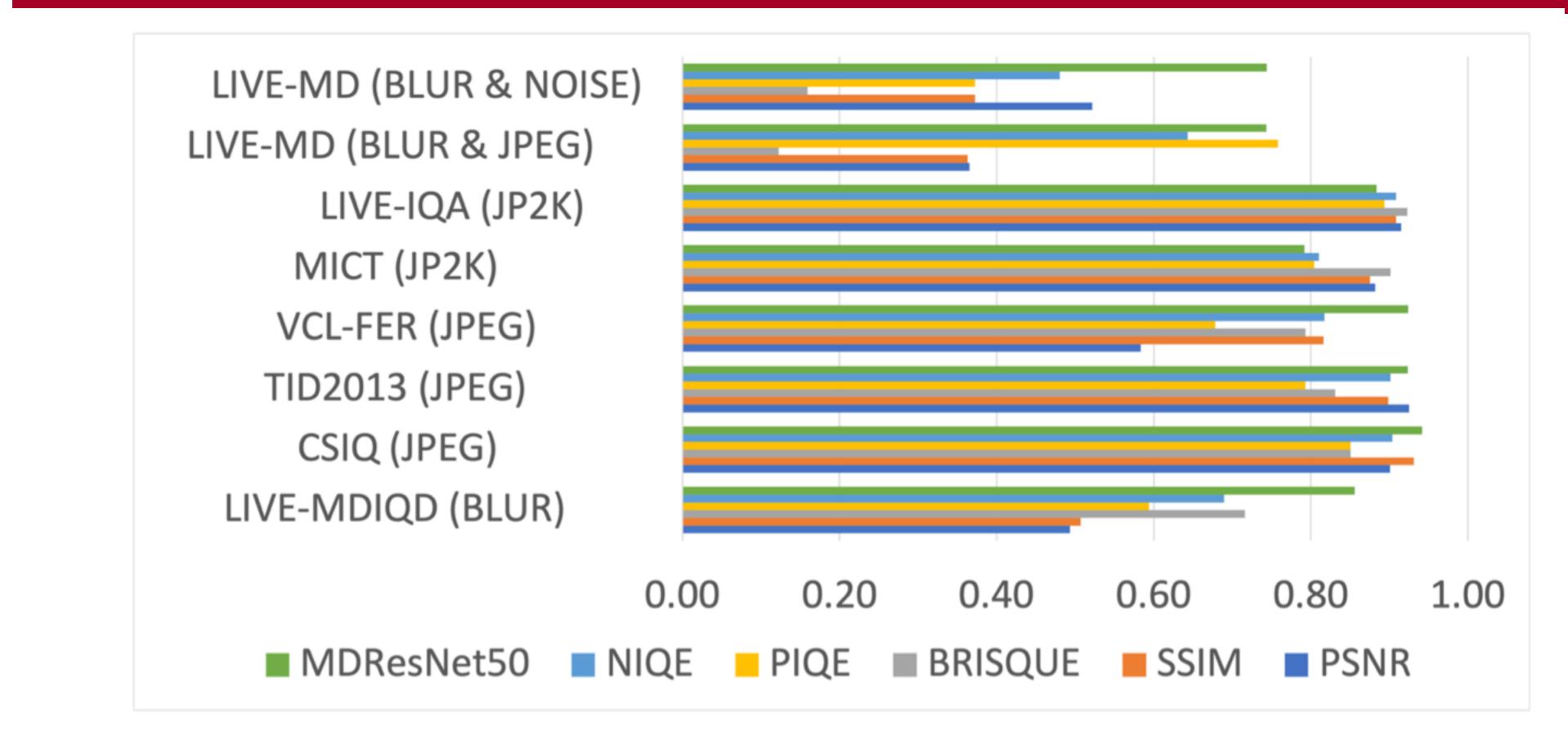
The Created Synthetically Annotated Datasets

- We started from 100 000 images from the ImageNet dataset;
- 75 000 were dedicated to the training set, 12 500 to the validation set and 12 500 to the test set;
- We obtained 75 000*5*4 = 1 500 000 training samples, 250 000 for the validation and 250 000 for the test;
- Note: there is no intersection between the three sets.

Training setup of the MDResNet50

- Done with 1.5 M training samples and 250 000 samples in the validation set;
- Available computational resources:
 - GPU NVIDIA GeForce RTX 3090 24 GB ram
 - CPU Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz with 64 GB ram
- The training lasted 7 days;
- Training Progress comparable to that of the JPEGResNet50

MDResNet50 vs Existing Metrics



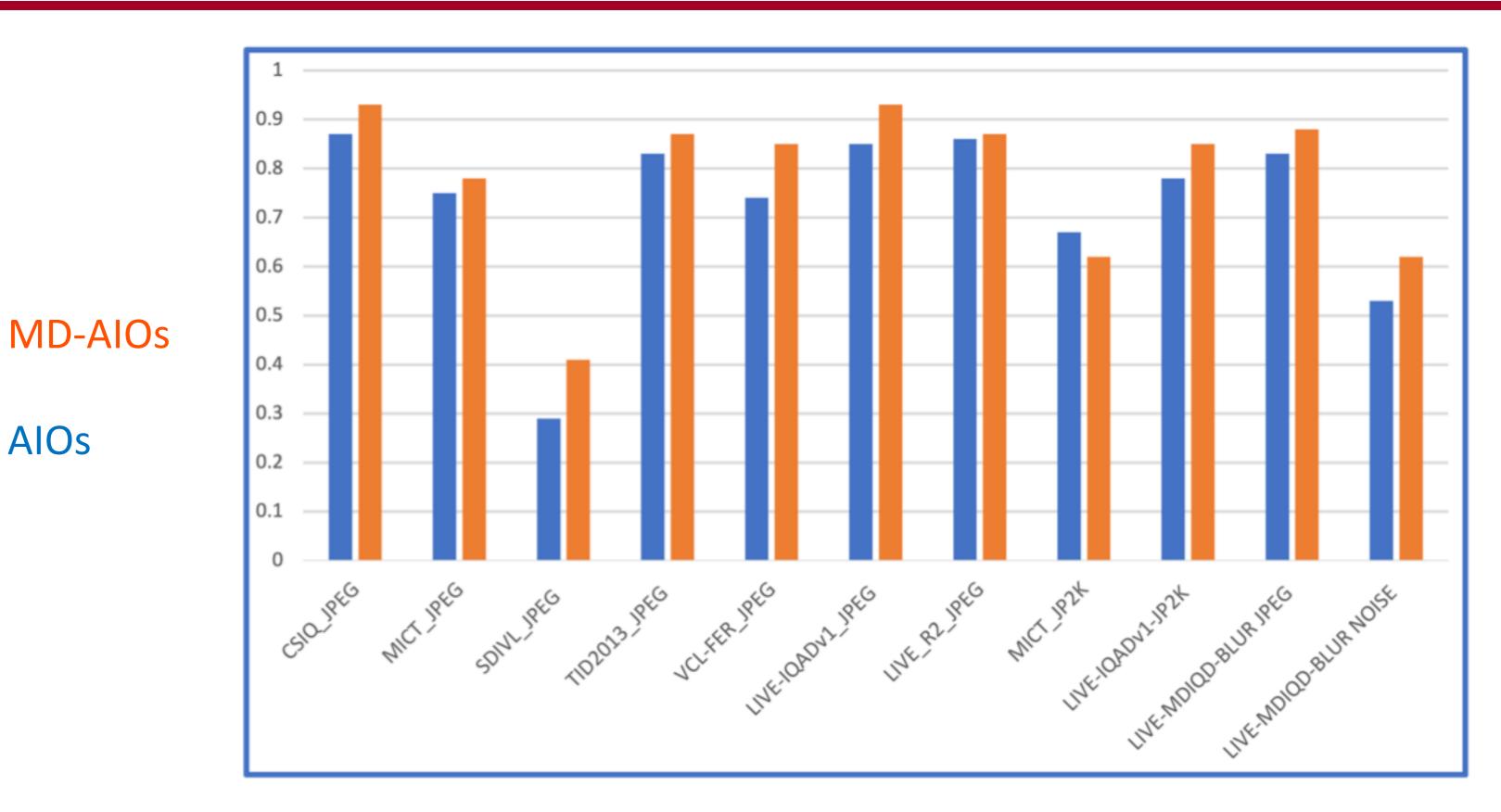
SROCC between the MOS and the VQMs

VQEG_JEG-Hybrid_2022_219

The MD-AIOs

- Previous result suggests that the MDResNet50 is a suitable starting point for transfer learning;
- An additional learning step was performed to get the AIOs;
- The training set (LIVE-MD) contains 15 ref + 225 distorted images (blur only, JPEG only and blur + JPEG);
- 19 subjects participated in the test, yielding 19 MD-AIOs.

MD-AIOs vs Previous AIOs



SROCC between the actual MOS and the mean of the ratings of the AIOs and the MD-AIOs

L Fotio

On The MD-AIOs Sensitivity to Input Modification

- Adding a few noise to the input image;
- Converting the RGB input image into a gray scale one.

Adding a few Gaussian Noise (GN)

RGB

VQEG_JEG-Hybrid_2022_219

L Fotio

RGB+GN

From RGB to Gray Scale (GS)

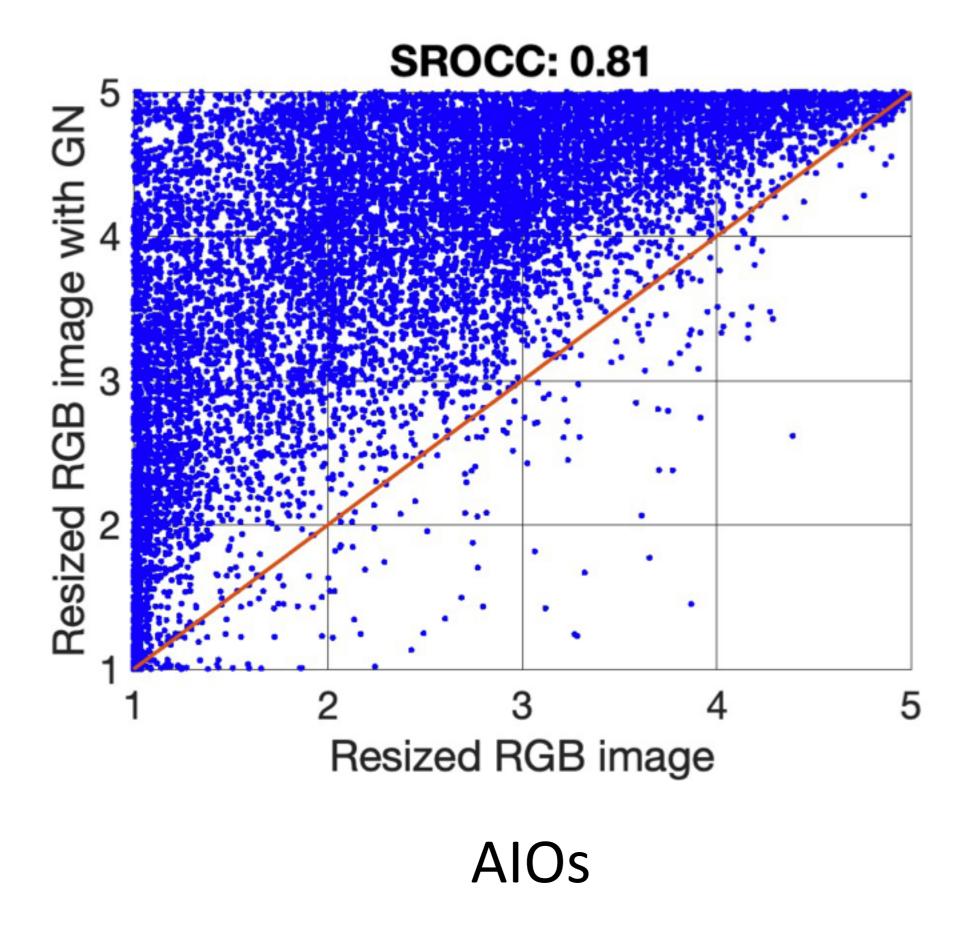
RGB

VQEG_JEG-Hybrid_2022_219

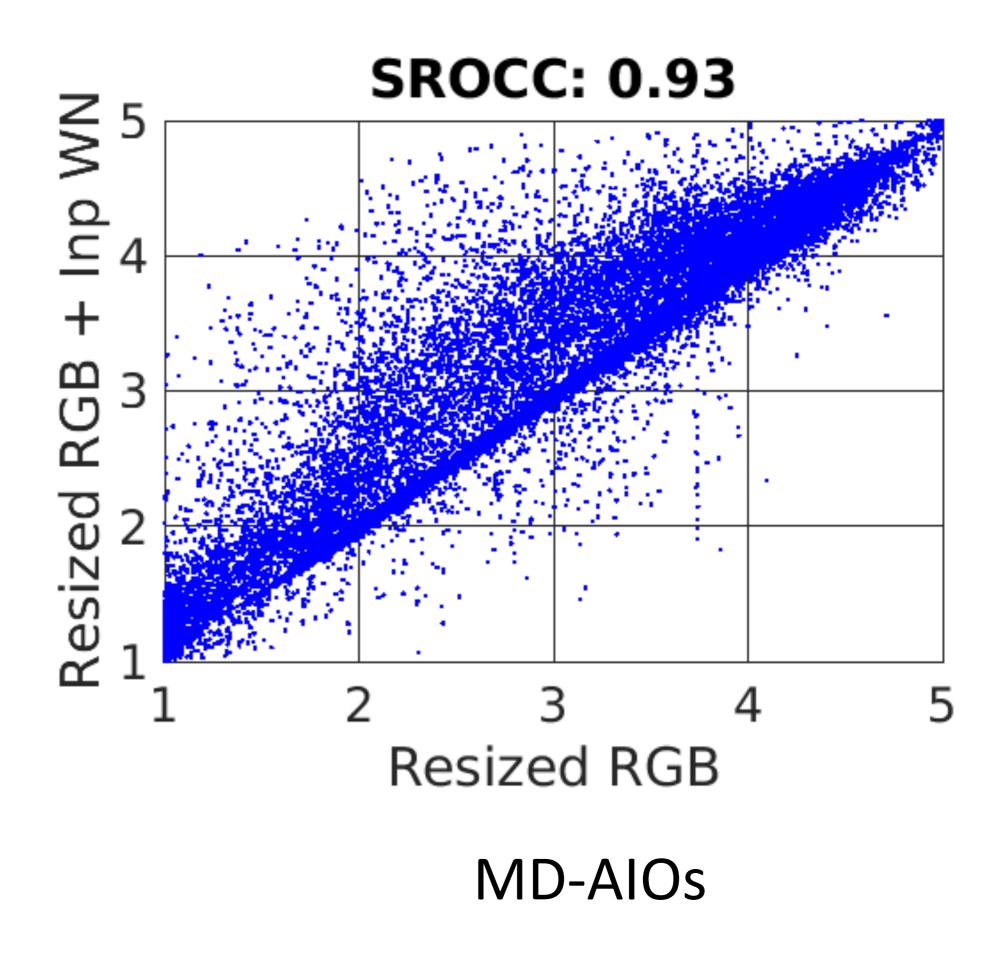
L Fotio

GS

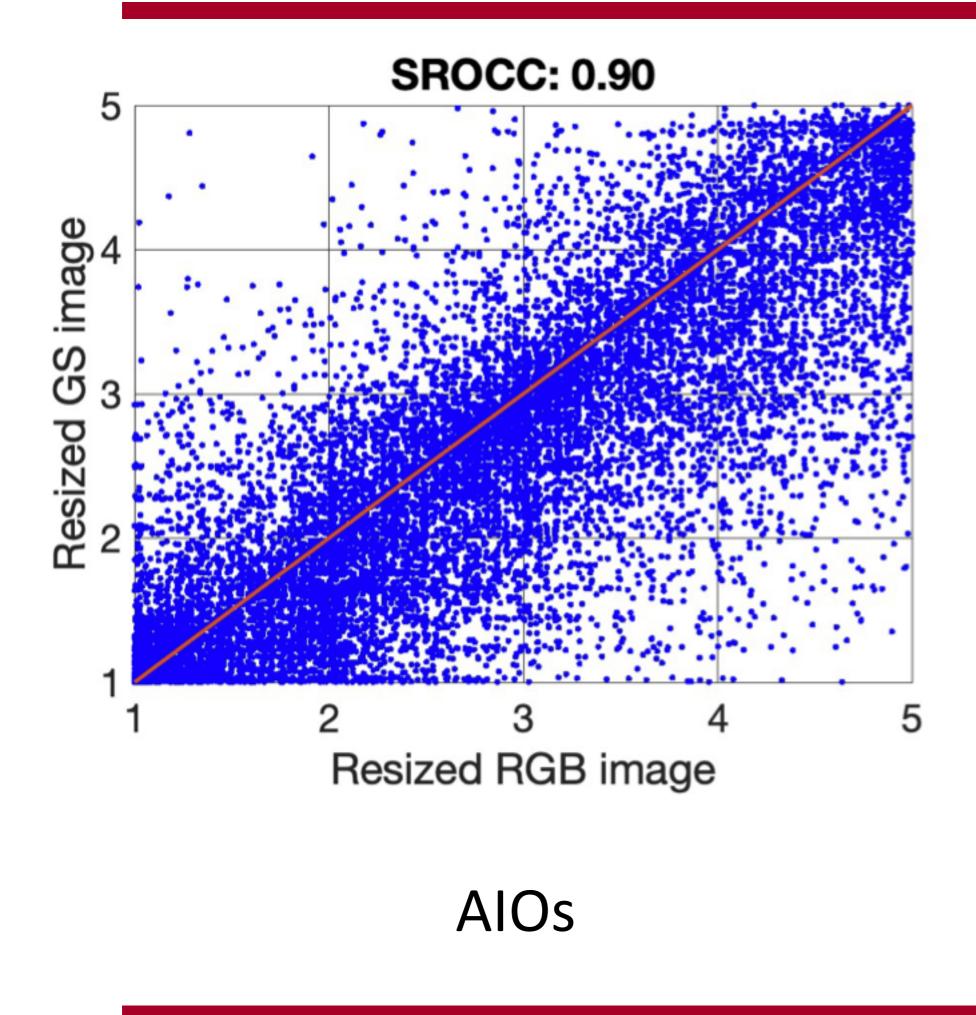
Adding "Not Perceptible" Gaussian Noise



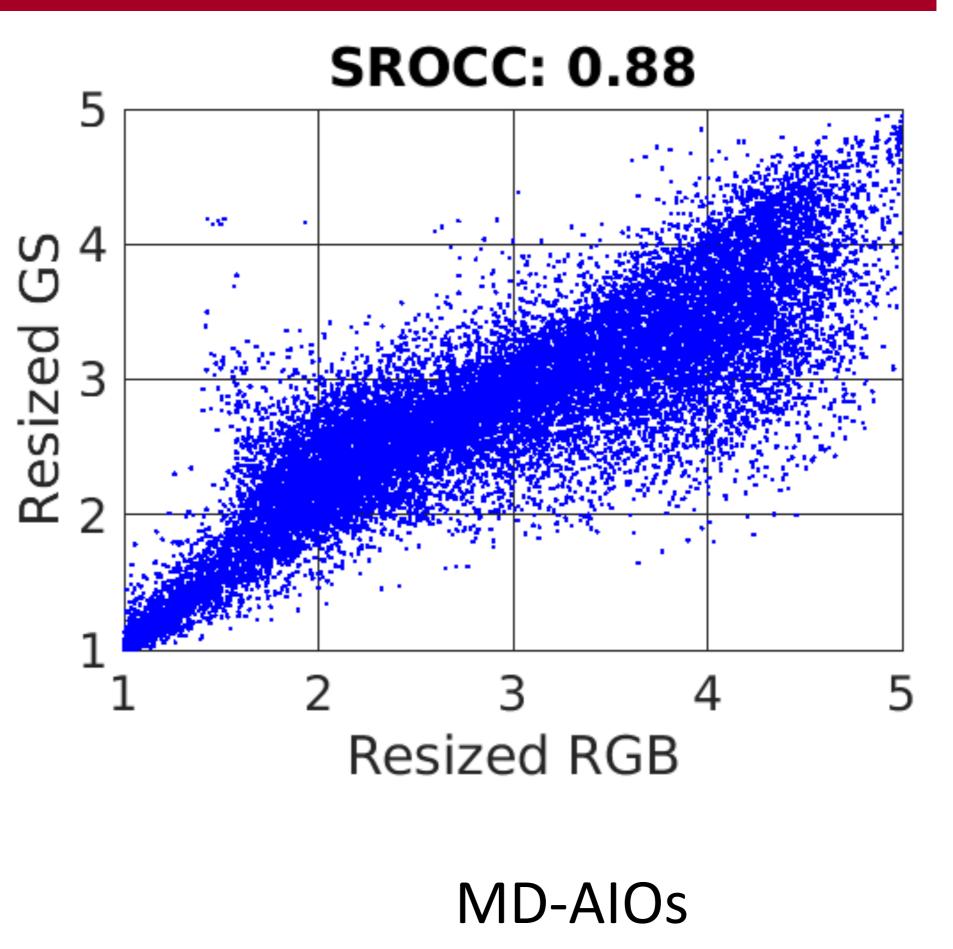
VQEG_JEG-Hybrid_2022_219



From RGB to Gray Scale



L Fotio



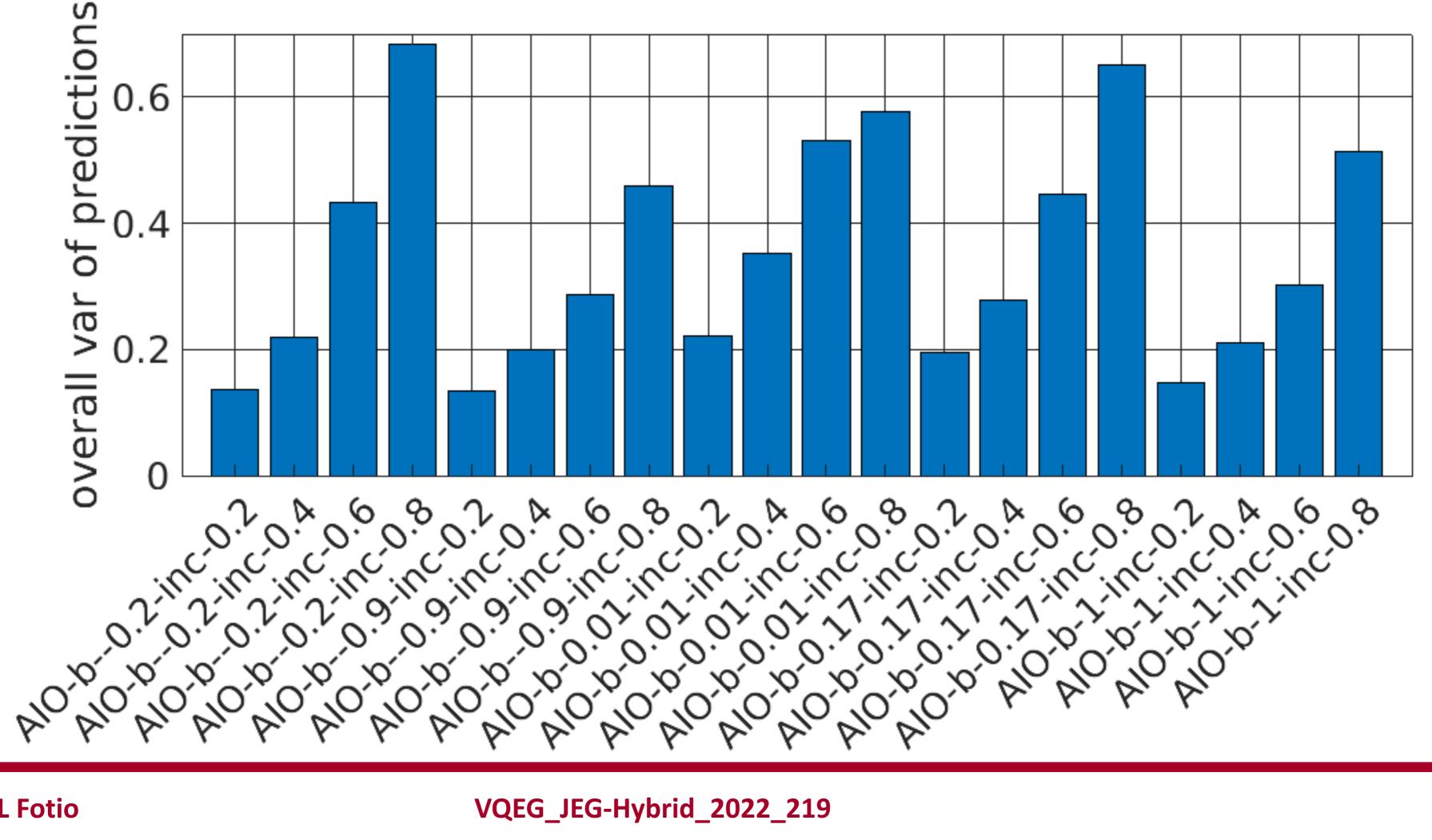
Mimicking the Subjects' Inconsistency

- We defined the variance of the predicted discrete probability distribution as a measure of inconsistency [2];
 - [2] L. Fotio et al., "Mimicking Individual Media Quality Perception with Neural Network Based Artificial Observers", ACM TOMM 2022
- We only showed that such a measure satisfies some properties expected on the subject inconsistency;
- Here, we exploit the scoring model [3]: $r = q + b + N(0, \sigma)$ (the same used in the Sureal software) for more investigation • [3] L. Janowski, M. Pinson, "The Accuracy of Subjects in a Quality Experiment: A Theoretical
 - Subject Model", IEEE TMM 2015

Experiment Setup

- The experiment is done with the release 2 of the LIVE-IQA; • A total of 808 stimuli were considered;
- Each stimulus *i* with the related subjective quality q_i ;
- We chose some ground truth bias and inconsistency values $\mathbf{b} = [-0.9 \ -0.2 \ 0.01 \ 0.17 \ 1] \ \boldsymbol{\sigma} = [0.2 \ 0.4 \ 0.6 \ 0.8];$
- We Simulated the ratings of 20 subjects on each stimulus *i* as: $r_i = q_i + b + N(0, \sigma) \ b \in \mathbf{b}$ and $\sigma \in \boldsymbol{\sigma}$
- We then trained 20 AlOs to mimic these simulated subjects.

Ground Truth Inc vs Avg variance of the prediction



L Fotio

25

Ground Truth Bias vs Avg Choice Probabilities

						0 5
AIO-b0.9-inc-0.2	0.45	0.44	0.05	0.06	0	0.5
AlO-b0.9-inc-0.4	0.4	0.43	0.11	0.04	0.01	
Alo-b0.9-inc-0.6	0.4	0.43	0.11	0.04	0.02	
AIO-b0.9-inc-0.8	0.4	0.36	0.14	0.05	0.04	0.4
AIO-b0.2-inc-0.2	0.09	0.5	0.34	0.05	0.03	0.4
AIO-b0.2-inc-0.4	0.12	0.48	0.28	0.08	0.04	
AIO-b0.2-inc-0.6	0.19	0.36	0.26	0.13	0.06	
AIO-b0.2-inc-0.8	0.16	0.31	0.24	0.18	0.11	0.2
AIO-b-0.01-inc-0.2	0.03	0.38	0.41	0.08	0.1	- 0.3
AIO-b-0.01-inc-0.4	0.09	0.35	0.36	0.11	0.09	
AIO-b-0.01-inc-0.6	0.15	0.33	0.26	0.14	0.12	
AIO-b-0.01-inc-0.8	0.12	0.3	0.35	0.14	0.1	0.2
AIO-b-0.17-inc-0.2	0.01	0.41	0.38	0.09	0.11	0.2
AIO-b-0.17-inc-0.4	0.04	0.31	0.46	0.11	0.09	
AIO-b-0.17-inc-0.6	0.09	0.22	0.37	0.21	0.1	
AIO-b-0.17-inc-0.8	0.1	0.27	0.31	0.2	0.12	0.1
AlO-b-1-inc-0.2	0	0.02	0.49	0.34	0.14	0.1
AIO-b-1-inc-0.4	0.01	0.07	0.41	0.37	0.15	
AIO-b-1-inc-0.6	0.01	0.05	0.42	0.28	0.25	
AIO-b-1-inc-0.8	0.03	0.15	0.28	0.27	0.27	0
	Bad	Poor	Fair	Good	Excellent	U

VQEG_JEG-Hybrid_2022_219