

Deep blind light field image quality assessment by extracting angular and spatial information

GROUPE

APPI IQUÉES

Zhengyu Zhang

Institut National des Sciences Appliquées de Rennes (INSA Rennes)

Supervisors: Luce Morin Lu Zhang

1

2

4

- Introduction & Motivation
- **Proposed Metric**
 - Overall framework
 - Angular-spatial patch generation
- Two-stream CNN model

3 Experiments

- Experimental settings
- Results

Conclusion

2

4

1 Introduction & Motivation

Proposed Metric

- Overall framework
- Angular-spatial patch generation
- Two-stream CNN model

3 Experiments

- Experimental settings
- Results

Conclusion

Introduction & Motivation

Introduction

Light Field Image (LFI)

- A novel imaging format
- Provides powerful immersive experience

Generation of LFIs

- Photographing the same scene from an array of viewpoints
- Narrow parallax

Typical representation of LFIs

Sub-Aperture Image (SAI) array

Sub-Aperture Image (SAI) array of LFIs

Introduction & Motivation

LFI processing chain

Our focus: No-Reference Light Field Image Quality Assessment (NR LF-IQA) metric

Introduction & Motivation

Motivation

Most existing NR LF-IQA metrics

- Hand-crafted features
- Fail to accurately predict the distorted LFI quality

Our work

- Discriminative features extracted by Convolutional Neural Network (CNN)
- Two new problems
- > No enough LFI data for training a CNN model.
- > No CNN model specifically designed for LF-IQA.

1

2

4

- Introduction & Motivation
- **Proposed Metric**
 - Overall framework
 - Angular-spatial patch generation
 - Two-stream CNN model
- 3 Experiments
 - Experimental settings
 - Results

Deep Blind Light Field image quality assessment metric (DeeBLiF)

Angular-spatial patch generation

Two-stream CNN model

1

2

4

- Introduction & Motivation
- **Proposed Metric**
 - Overall framework
 - Angular-spatial patch generation
- Two-stream CNN model

3 Experiments

- Experimental settings
- Results

Conclusion

Experiments

Experimental settings

Dataset : Win5-LID dataset (10 reference scenes and 220 distorted LFIs)

Training-test strategy : K-fold cross-validation (K-2 folds for training and 2 folds for testing)

All reference scenes in Win5-LID

Evaluation criteria : Pearson Linear Correlation Coefficient (PLCC) Spearman Rank Order Correlation Coefficient (SROCC) Root Mean Square Error (RMSE)

Experiments

Results

Table 1. Overall performance comparison.							
Types	Metrics	PLCC↑	SROCC ↑	RMSE↓			
NR 2D-IQA	BRISQUE	0.5630	0.4547	0.7970			
	GWH-GLBP	0.5768	0.3881	0.7820			
	NIQE	0.5281	0.4403	0.8153			
NR 3D-IQA	SINQ	0.5737	0.4039	0.7820			
NR Multi-	MNSS	0.3539	0.1844	0.9127			
view-IQA	Wang's	0.4295	0.2113	0.8745			
FR LF-IQA	MDFM	0.7686	0.7337	0.6309			
	Min's	0.7207	0.6429	0.6918			
	BELIF	0.5912	0.5119	0.7572			
	VBLFI	0.7042	0.6608	0.6819			
NR LF-IQA	NR-LFQA	0.7297	0.6976	0.6270			
	Tensor-NLFQ	0.7595	0.7345	0.6327			
	4D-DCT-LFIQA	0.8267	0.8079	0.5512			
	DeeBLiF	0.8427	0.8186	0.5160			

Table 2. Ablation study of different combinations of streams.StreamPLCC \uparrow RMSE \downarrow

Stream	PLCC ↑	SROCC ↑	RMSE↓
angular	0.8355	0.8088	0.5233
spatial	0.8224	0.7974	0.5440
two-stream	0.8427	0.8186	0.5160

From the TABLE:

- 1. The proposed DeeBLiF achieves the best performance.
- 2. Using both angular and spatial streams performs better than using a single stream.

Conclusion

A novel patch-wise deep no-reference light field image quality assessment metric is proposed, which generates angular-spatial patches to address the problem of insufficient LFI training data. In addition, the proposed metric introduces a two-stream CNN model to fully extract the potential information in angular-spatial patches. Experimental results on the Win5-LID dataset demonstrate that the proposed metric outperforms the stat-of-the-art IQA metrics.

THANKS