

Video quality testing of Video Assistant Refereeing (VAR) Systems

Kjell Brunnström, Anders Djupsjöbacka and Oskars Ozolins

RISE Research Institutes of Sweden

Video assistant referee (VAR)

- Quality needs to be assured
- Important aspects
 - Latency
 - Synchronicity
 - Video Quality

孔 汇

Timeline

- Research project from end of 2018 to beginning of 2020
- Field tests
 - Düsseldorf (Germany) in Jan 2020
 - Zeist (The Netherlands) in March 2020
- Improvement development 2020 2022
- Certification events
 - Stockholm (Sweden) in August 2021
 - Stockholm (Sweden) in May 2022

Synchronicity and latency measurements

 Based around a stroboscope placed on the pitch

RI. SE

Latency measurements data

Synchronicity measurements set-up

Synchronicity measurements data

- Reference camera: flash in lowest frame number
- Difference to reference camera
- Max 3 to pass

	Main	16m	16m	Centre line	Max	
Flash	cam = 1	right	left	pitch level	diff	Decision
1	34	36	35	37	3	pass
2	35	35	36	37	2	pass
3	35	35	36	37	2	pass
4	35	35	35	35	0	pass
5	35	35	35	35	0	pass

Video Quality measurements

- Ingesting known video
- Grabbing the played ingested video
- Measure video quality degradation (VMAF)

Video Quality measurements

- Based on subjective experiment with 25 video experts
- Three sessions were performed by each subject, but the order was randomized.
 - 1) Full size 1920x1080 video based on progressive source (1080p).
 - 2) Full size 1920x1080 video based on interlaced source (1080i).
 - 3) Quarter size 960x540 video based on interlaced source (540i).
- A high-end consumer-grade 65" 4K TV (Ultra HD, LG OLED65E7V)
- ACR-HR with the VQEGPlayer
- ITU-R Rec. BT-500-14

Video processing

- 1080p
 - H.264 (80 Mbit/s 10 Mbit/s) and Motion JPEG (80 Mbit/s 20 Mbit/s)
- 1080i:
 - H.264 (50 Mbit/s 10 Mbit/s), Motion JPEG (80 Mbit/s 20 Mbit/s) and bad deinterlacing
- **5**40i:
 - H.264 (50 Mbit/s 10 Mbit/s) and different scaling algorithms
- Interlaced video were deinterlaced before playing using FFMPEG yadif (1:0:0,mcdeint=3:0:1)

12

Source videos (1080p)

Source videos (1080i)

Objective models evaluation (1080p)

Model	VMAF	VQM_VFD	VQM	SSIM	PSNR
			General		
VMAF					
VQM_VFD	<mark>0.00014 *</mark>				
VQM_General	0.22	< <u>0.0001 *</u>			
SSIM	<mark>0.0067 *</mark>	< <u>< 0.0001 *</u>	0.042		
PSNR	<mark>0.0034 *</mark>	< 0.0001 *	0.024	0.40	
VIF	<mark>0.0040 *</mark>	< 0.0001 *	0.028	0.43	0.48

Objective models evaluation (1080i)

Model	VMAF	VQM_VFD	VQM	SSIM	PSNR
			General		
VMAF					
VQM_VFD	0.17				
VQM_General	0.29	0.066			
SSIM	<mark>0.00046 *</mark>	<mark>< 0.0001 *</mark>	<mark>0.0027 *</mark>		
PSNR	0.044	<mark>0.0042 *</mark>	0.12	0.049	
VIF	0.0343	<mark>0.0030 *</mark>	0.10	0.062	0.45

Video Quality measurements

- VQM_VFD best model
- Video Multimethod Assessment Fusion (VMAF) was decided to be used
 - Second best
 - Easier to use and don't require Matlab to be used
 - Open and well spread

Summary and challenges

- Measurement methods for Quality evaluation of VAR systems have been developed
- Latency and synchronicity methods are based on controlled flashes from stroboscope
 - Get clean pulses (e.g. noise and backlight modulations)
 - Complexity on-site mixing of equipment from different sources
- Video quality is based on sending known videos and measure quality degradations with VMAF
 - Interlace and deinterlacing
 - New broadcast formats

THANK YOU

Kjell Brunnström

Kjell.brunnstrom@ri.se

