YouTube YouVQ: A new no-reference metric for UGC

Media Algorithms Team

Balu Adsumilli Yilin Wang

VQEG, Dec. 2021

What is UGC?

YouTube UGC Dataset

Introducing YouVQ

What is UGC?

What we see

YouTube video traffic

- 500 hours of video shared every minute
- >2B daily active users in 100+ countries in 80+ languages
- 70% of YouTube is watched on mobile devices
- ~1400 combinations of codecs, containers, resolutions, and formats
- most of the videos uploaded are user generated content

User Generated Content (UGC)

Content and emotion > narrative and quality

- \bigcirc
- \bigcirc

Artifact-ridden: shaky cam, low light, portrait, overlays, heavily compressed Variability due to content creator, network, unusual viewing environment

Current Video Quality Metrics

Subjective

- Mean Opinion Score (MOS) \bigcirc
- Differential Mean Opinion Score (DMOS) \bigcirc

Objective

- Reference-based metrics: PSNR, SSIM, VMAF \bigcirc
 - Assumes a pristine original that the target should "get close to"
- No-reference metrics: banding, noise, NIQE \bigcirc
 - Does not depend on the original, pristine or otherwise

Are any of these good for UGC?

Trouble with existing notions High Pixel Difference **#** Low Perceptual Quality

Left image: greater MSE. Right image: much lower spatial frequencies. Human vision system has a stronger response to the lower spatial frequencies .

MSE=21.26

Need for accurate no-ref metric for UGC

Growing need for a reliable no-reference fidelity metric (not artifact) • Original video is either not available or not a reference (not pristine)

Similar perceptual quality (DMOS~=0)

same relative quality deltas map differently for varying original video quality

Transcoded PSNR= 43.77, SSIM=0.969, VMAF=89.34

UGC Video Quality Assessment

Foundational question: Will we need to rethink video quality metrics in the presence of non-pristine originals?

We start with a dataset

- rates, formats
- Universal availability
- Ground truth subjective data

• Distributed across variations in content, complexity, resolutions, frame

YouTube UGC Dataset

YouTube UGC Dataset (YT-UGC): <u>media.withyoutube.com</u>

1500 Uploaded videos

- Sourced from 1.5 million uploads \bigcirc
- 15 content categories \bigcirc
- Each video in multiple resolutions, fps \bigcirc
- Ground truth (MOS) for all videos
- Added DMOS for popular categories Added 600+ content labels

Balu Adsumilli et al., "Launching a YouTube dataset of user-generated content", YouTube tech blog Yilin Wang et al., "YouTube UGC Dataset for Video Compression Research", MMSP 2019 Joong Yim et al., "<u>Subjective Quality Assessment for YouTube UGC Dataset</u>", ICIP 2020 Yilin Wang et al., "Rich features for perceptual quality assessment of UGC videos", CVPR 2021

Labels: Outdoor recreation(0.455), Game(0.455), Ball(0.455), Baseball bat(0.364), Cricket(0.182), Yo-yo(0.182), Walking(0.091), Mabinogi (video game)(0.091)

Perceptual Quality Assessment Aspects

	Low qual
Video Content	
Distortions (Introduced during video production phase)	
Video Compression (introduced by compression or transmission)	

UGC Video Quality Human Evaluation

Blurred texture

Heavily compressed text

stroves reading, but then require a short reload time before the pert attack

Real-time strategy game (interesting content)

Conclusion Medium low quality (MOS=2.761)

Explanation

Poor text and texture quality lead to bad game watching experience

How do we scale UGC evaluation?

Blue Reagent: Report to Tara

Dungeon Cleared (Make room in your investory)

-Messae

[Elue Realgent] Ostained

Auto-evaluation from multiple aspects:

- Content
- Distortion
- Compression

Report quality beyond a single score - folding in multiple high level interpretable indicators

Requirements for UGC metric

Comprehensively map to human evaluations accurately, folding in all the nuances of UGC

Target UGC centric no-reference, while still perform reliably with reference

Introducing YouVQ - a VQ metric for UGC

YouTube YouVQ Framework

UGC Video Quality Assessment (UGC-VQA)

- Existing handcrafted feature approaches (SSIM, VMAF, etc)
 - Difficult and time-consuming \bigcirc
 - Insufficient feature set (summarized from limited samples) \bigcirc
- Current Machine Learning approaches
 - Automatic feature learning \bigcirc
 - Suitable for large scale UGC data \bigcirc

Direct training on UGC dataset:

Quality score

Training data for UGC video quality assessment

- UGC datasets with quality labels • YT-UGC (1.5K), Patch-VQ (40K)
- Compare with non-quality datasets Kinetics-600 (500K videos), YT8M (8M videos), ImageNet (14M images) \bigcirc
- Transfer Learning preferred

Direct Transfer Learning

Non-UGC Quality Related Pretraining

Backbones

Embeddings

UGC Dataset Fine-Tuning

Quality score

Direct Transfer Learning

Non-UGC Quality Related Pretraining

Backbones

Embeddings

For recognition: similar

For video quality: very different

Quality score

UGC Dataset Fine-Tuning

Retraining on quality related data

Non-UGC Quality **Related Pretraining**

Backbones

UGC Quality **Related Retraining**

Feature Extraction

UGC Dataset Fine-Tuning

Effectiveness of UGC quality related retraining

Evaluated on YT-UGC MOS

Backbone (EfficientNet-b0)

Raw (ImageNet, frozen weights)

Raw (ImageNet, trainable weights)

Retrained (KADIS-700K, frozen weights

Retrained (KADIS-700K, trainable weigl

PLCC, SRCC: correlation coefficients in [0, 1], the higher the better.

	PLCC	SRCC
	0.624	0.612
	0.671	0.690
	0.732	0.735
nts)	0.732	0.738

Direct transfer learning

With quality related retraining

YouVQ: YouTube Video Quality Assessment Framework

Outputs: compression level
 Yilin Wang et al., "<u>Rich features for perceptual quality assessment of UGC videos</u>", CVPR 2021

Indicators

- content labels
- distortion types

YouVQ: YouTube Video Quality Assessment Framework

Benefits of YouVQ framework:

- Self-supervised learning on raw UGC videos, no longer restricted by labeled MOS.
- Complementary features learned from different quality related aspects.
- Works on native resolutions, and sensitive to local details.

nger restricted by labeled MOS. Jality related aspects. details.

YouVQ: YouTube Video Quality Assessment Framework

Benefits of YouVQ framework:

- Self-supervised learning on raw UGC videos, no longer restricted by labeled MOS. Complementary features learned from different quality related aspects. Works on native resolutions, and sensitive to local details.

YouVQ Features: ContentNet (CT)

- Multi-label classification
- Model trained on 100k YT8M videos
 - Inputs: single image
 - Outputs: 3862 UGC content labels
 - Loss: cross-entropy

Backbone: EfficientNet-b0 (pre-trained on ImageNet)

Backbone model	#Params	#FLOPS	YT8M Classification Accuracy			Correlation on YT-UGC quality scores		MOS		DMOS	
			Top-1	Ton-5	Top-10			bO	b7	bO	b
						_ /	Content features only	0.628	0.615	0.584	0.3
ResNet-50	23.5M	3.8B	0.325	0.554	0.659		Content+Compression	0.787	0.774	0.672	0.6
EfficientNet-b0	5.3M	0.39B	0.463	0.721	0.792		Content+Distortion	0.750	0.752	0.390	0.3
EfficientNet-b7	66M	37B	0.460	0.723	0.788		All three features	0.802	0.796	0.539	0.4

No gain when using EfficientNet-b7 feature for quality assessment.

YouVQ Features: DistortionNet (DT)

Synthetic distortions

- 23 types, e.g. Gaussian noise and motion blur \bigcirc
- distorted variants in 5 levels per type \bigcirc
- Model trained on KADIS-700K images
 - Inputs: two images with the same distortion type \bigcirc
 - Outputs: distortion type and level \bigcirc
 - Loss: cross-entropy + pairwise hinge loss \bigcirc
- Backbone: EfficientNet-b0 (pre-trained on ImageNet)

YouVQ Features: CompressionNet (CP)

- Self-supervised learning ()
- Compressing original videos with recommended VP9 settings for VOD and Live Model trained on YT8M 1080p videos
- - Inputs: original and its VOD and Live versions \bigcirc
 - Outputs: compression level in [0, 1] + compression feature (last layer outputs)
 - \bigcirc Loss: pairwise loss + contrastive loss \bigcirc
- Backbone: D3D (pre-trained on Kinetics-600)

Pairwise loss: (Orig>VOD, Orig>Live, VOD>Live)

Contrastive loss: sim(Orig, VOD) / (sim(Orig, Live) + sim(VOD, Live) + sim(Orig, VOD)) Note: sim() means feature similarity

YouVQ feature aggregation

AggregationNet

- Training with YouVQ features on YT-UGC original MOS \bigcirc
- Three candidate aggregation models \bigcirc
 - AvgPool, LSTM, ConvLSTM
- AvgPool performs best \bigcirc

Feature		AvgPool			LSTM			ConvLSTM	
	PLCC	SRCC	RMSE	PLCC	SRCC	RMSE	PLCC	SRCC	RMSE
CP+CT+DT	0.802	0.816	0.382	0.767	0.771	0.411	0.760	0.764	0.418

Correlations on YT-UGC MOS

most UGC videos have relatively consistent quality among frames

YouTube YouTube YouYQ Performance

Correlations with YT-UGC MOS

YouVQ Features	PLCC	SRCC
CP (Compression)	0.770	0.785
CT (Content)	0.628	0.628
DT (Distortion)	0.726	0.744
CP+CT	0.787	0.801
CP+DT	0.790	0.802
CT+DT	0.750	0.767
CP+CT+DT	0.802	0.816

Increasing

Generalizability on MOS Prediction for UGC

Model fine-tuned	I on YT-UGC MOS	Directly predicting on KoNViD-1k MOS		
PLCC (YouVQ)	0.802	0.670		
PLCC (best of other evaluated metrics)	0.761 (from VSFA)	0.602 (from VSFA)		
Metrics compared	BRISQUE, NIQE, VIIDEO, TLVQM(SVR), TLVQM(RFR), VSFA	TLVQM(SVR), TLVQM(RFR), VSFA		

Generalizability on DMOS Prediction for UGC

Evaluated on YT-UGC DMOS (not re-trained) 189 originals + three VP9 variants

Pred DMOS = YouVQ(ref) - YouVQ(target)

- Sensitive to compression
- Good correlations without retraining

Metric	PLCC
PSNR	0.402
SSIM	0.493
VMAF	0.401
LPIPS	0.524
TLVQM	0.276
VSFA	0.403
YouVQ	0.660

Comprehensive Quality Indicators

ContentNet

- top-10 label accuracy
 - 0.792 on YT8M \bigcirc
 - 0.53 on YT-UGC \bigcirc

DistortionNet

Content labels: Car (0.58), Vehicle (0.42), Sports Car (0.32), Motorsports (0.18), Racing (0.11)

evaluated on KADID-10K distortion classification accuracy 0.97

Distortion types: Jitter (0.112), Color quantization (0.111), Lens blur (0.108), Denoise (0.107)

CompressionNet

- self-supervised learning
- high accuracy on predicting pairwise order of compression level

Compression level: 0.892 (high)

Locating Local Quality Issues YouVQ provides patchwise quality assessment

Patch at time t = 1compression level = 0.000

Patch at time t = 2compression level = 0.904

How YouVQ works in practice

Blue Reagent: Report to Tara

Dungeon Cleared (Make room in your inventory)

- Mesicia

[Elue Reagent] Ostained

strows ready, but then require a short reload time before the next attack

YouVQ diagnosis report

From ContentNet (CT)

Video game, Strategy video game, World of Warcraft, etc

From DistortionNet (DT)

Multiplicative noise, Gaussian blur, Color saturation, Pixelate, etc

From CompressionNet (CP)

0.559 (medium high compression)

Predicted quality score in [1, 5] (CP, CT, DT): (3.151, 3.901, 3.216) (CP+CT+DT): 3.149 (medium low quality)

Summary

We introduced YouVQ for UGC video quality assessment

- It is a comprehensive framework to analyze UGC video quality and makes the VQ score more interpretable
- Maps very well to ground truth human evaluations
- Performs consistently and reliably for no-reference, works equally well when reference is present (pristine or otherwise)

Videos and subjective data are available on media.withyoutube.com

Thankyou

