Impact of Spatial and Temporal Information on Video Quality and Compressibility

Werner Robitza^{1,2}, Rakesh Rao Ramachandra Rao², Steve Göring², Alexander Raake²

¹AVEQ GmbH, Vienna, Austria ²Ilmenau University of Technology, Ilmenau, Germany

- This presentation is a preview of an upcoming paper at QoMEX 2021
- Online from June 14^{th} - 17^{th}
- https://qomex2021.itec.aau.at/

Spatial Information / Temporal Information

About SI and TI:

- Defined in ITU-T Rec. P.910
- Classify spatiotemporal complexity of video sequences
- **SI:** Standard deviation of Sobel-filtered image
- **TI:** A basic motion difference feature for adjacent frames

ILMENAU

This contribution:

- Related to ongoing VQEG NORM project
- SI/TI frequently used for classifying sources for video quality tests
- How well can SI/TI be used to gauge compressibility of a video?

By Simpsons contributor, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8904663

This Contribution

- Related to ongoing VQEG NORM project with different activities
 - Usage for material with > 8 bit
 - HDR
 - ...
- In this contribution, however, focus on:
 - SI/TI are frequently used for classifying sources for video quality tests
 - Choosing the sources is important for codec development, subjective testing, etc.
- How well can SI/TI be used to gauge compressibility of a video?

Working Hypothesis

Videos with higher SI/TI should be harder to compress

Videos with higher SI/TI have lower quality when compressed under bitrate constraint

Compressibility of a source == achievable quality under bitrate constraints

High SI/TI lead to lower quality and lower compressibility

Quality == subjective or "objective" MOS

TECHNISCHE UNIVERSITÄT

ILMENAU

Database and Features

$\textbf{AVT-VQDB-UHD1}^1$

- Test 1: 180 PVSes
- Tests 2 & 3 with overlapping PVSes → mapped into one "virtual" test called "test 2+3" with 320 PVSes
- Test 4: includes FPS changes, therefore ignored

SI and TI scores

- Per frame, averages, minimum/maximum²
- Additionally: Criticality metric from Fenimore et al.³ that uses SI/TI

 $C = log \{mean_{time} [SI(F_n) * TI(F_n)]\}$

Video quality scores

- Subjective MOS from ITU-T Rec. P.910compliant lab tests
- VMAF (4K model, v0.6.1); full-reference model
- ITU-T Rec. P.1204.3; bitstream-based model⁴

¹ https://github.com/Telecommunication-Telemedia-Assessment/AVT-VQDB-UHD-1
² calculated via https://github.com/Telecommunication-Telemedia-Assessment/siti-tools
³ see Fenimore et al. (1998), Perceptual Effects of Noise in Digital Video Compression
⁴ calculated via https://github.com/Telecommunication-Telemedia-Assessment/bitstream_mode3_p1204_3

Data Preparations

- Consistency checks:
 - "Dancers_8s" contained possibly erroneous PVSes already at encoding stage, and was completely removed
 - All VMAF scores for "water_netflix" sequence were erroneous and removed (possible frame offset)
 - P.1204.3 scores for four PVSes were removed due to being extreme outliers (possible model bug)
- How well do VMAF and P.1204.3 work?
 - Very well see plot on the right
 - Pearson correlation between metric and MOS: P.1204.3: 0.96
 VMAF: 0.94

ILMENAU

th:

ILMENAU

TECHNISCHE UNIVERSITÄT

1. Create bitrate ladder for each SRC, i.e. MOS against bitrate

Codec … h264 -- hevc — vp9

- 1. Create bitrate ladder for each SRC, i.e. MOS against bitrate
- 2. Construct convex hull of ideal points

CLEQ

Codec - h264 - hevc - vp9

- Create bitrate ladder for each SRC, i.e. MOS against bitrate
- 2. Construct convex hull of ideal points
- 3. Fit sigmoid function¹ against hull

$$S = a + \frac{b-a}{1+\exp\left(-c*(\log(R)-d)\right)}$$

¹ based on: Hanhart et al. (2014), Calculation of average coding efficiency based on subjective quality scores

th:

ILMENAU

TECHNISCHE UNIVERSITÄT

- 1. Create bitrate ladder for each SRC, i.e. MOS against bitrate
- 2. Construct convex hull of ideal points
- 3. Fit sigmoid function against hull
- 4. Calculate are under each curve as
 quality/compressibility for that SRC/codec

Compressibility

→ 1 number for each SRC/codec combination

Compressibility

thi

ILMENAU

TECHNISCHE UNIVERSITÄT

 \rightarrow Fach SRC and codec have different compressibility scores

Note:

- Scores are normalized between 0 and 1 for this analysis (to be refined)
- Scores are based on MOS here

Examples:

- BBB is the easiest to compress, although used very often in tests
- Netflix Water sequence is the hardest

ILMENAU

- **TI features** have higher correlation with compressibility than SI features
- Minimum TI seems like a better ____ correlated indicator than maximum TI
- Mean SI correlates better than min/max
- Criticality metric from Fenimore et al. has good correlation with compressibility

VQEG Online Meeting, June 2021

Summary

- Method to determine quality/compressibility of a given SRC and codec
 - Construct convex hull
 - Determine area under the curve
- Results:
 - SI/TI correlate with quality and compressibility
 - Minimum TI is a useful indicator too (for short sequences)
- Further research:
 - Are there combinations of SI/TI that can be more useful?
 - Determine compressibility as a single number on universal scale

Thank you!