

On the suitability of VMAF for quality assessment of medical videos: Medical ultrasound & wireless capsule endoscopy

Arslan Usman and Maria Martini

Presenter: Prof Maria Martini Wireless Multimedia and Networking Research Group Kingston University, London, UK

Medical Image/Video Quality Evaluation

What makes it more challenging?

- In medical images the diagnostic quality of the image is more important than the perceptual quality
- However, typical objective image quality metrics do not measure the diagnostic quality

Option 1: develop tailored metrics

Examples:

- A Raj, NA Shah, AK Tiwari, MG Martini, Multivariate Regression-Based Convolutional Neural Network Model for Fundus Image Quality Assessment, *IEEE Access* 8, 2020, 57810-57
- M Razaak and MG Martini, "CUQI: Cardiac Ultrasound Quality Index," SPIE Journal of Medical Imaging, 2016.

Option 2: study which of the existing metrics performs best

PSNR, SSIM, UQI, VQM, NQM, VIF, NIQE, BRISQUE were tested earlier for Ultrasound video, Wireless Capsule Endoscopy, ENT Endoscopic Video, Radiological images

- M. Razaak, M.G. Martini and K. Savino, "A Study on Quality Assessment for Medical Ultrasound Video Compressed via HEVC," *IEEE Journal of Biomedical and Health Informatics (J-BHI)*, vol. 18, no. 5, pp. 1552-1559, Sep 2014.
- Usman, M. A., Usman, M. R., & Shin, S. Y. (2017). Quality assessment for wireless capsule endoscopy videos compressed via HEVC: From diagnostic quality to visual perception. *Computers in biology and medicine*, *91*, 112-134.
- Chaabouni, A., Gaudeau, Y., Lambert, J., Moureaux, J.M. and Gallet, P., 2014, October. Subjective and objective quality assessment for H264 compressed medical video sequences. In 2014 4th International Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1-5). IEEE.
- Kowalik-Urbaniak, Ilona, Dominique Brunet, Jiheng Wang, David Koff, Nadine Smolarski-Koff, Edward R. Vrscay, Bill Wallace, and Zhou Wang. "The quest for diagnostically lossless' medical image compression: a comparative study of objective quality metrics for compressed medical images." In *Medical Imaging 2014: Image Perception, Observer Performance, and Technology Assessment*, vol. 9037, p. 903717. International Society for Optics and Photonics, 2014.

Option 2: study which of the existing metrics performs best, ctd.

VMAF was developed for and trained on non-medical video, but has shown excellent performance for different types of video (e.g. gaming)

Challenge: what if we apply it to medical video?

Ultrasound video dataset

- Nine ultrasound video sequences provided by cardiologist in Perugia Hospital (Heart, Liver, Kidney, Lung), 640 x 416, 100 frames, 25fps
- Compressed with HEVC at eight different compression ratios

9 x 8 = 72 video sequences being evaluated with DSCQS (144 sequences evaluated by each specialist not including intra-subject controls)

[Razaak, Martini, Savino, IEEE JBHI 2014)]

Extensive subjective tests run with medical doctors in Hospital of Perugia

Wireless Capsule Endoscopy video dataset

Ten source video sequences provided by Intromedic Co. Ltd., South Korea, for research purposes.

3 fps (Native) 320 x 320 (Native) 10 s

HEVC compression with QP 27, 29, 31, 33, 35, 37, 39 & 41

Usman, M. A., Usman, M. R., & Shin, S. Y. (2017). Quality assessment for wireless capsule endoscopy videos compressed via HEVC: From diagnostic quality to visual perception. *Computers in biology and medicine*

Medical Image quality evaluation Other Objective Quality Metrics considered

Existing FR-VQMs considered as benchmark.

Quality metric	Abbreviation
Peak Signal to Noise Ratio Structural Similarity Index Metric [13]	PSNR SSIM
Multi Scale SSIM [14]	MS-SSIM
Visual Signal to Noise Ratio [15]	VSNR
Information Fidelity Criterion [16] Visual Information Fidelity [17]	IFC VIF
Pixel-based VIF [17]	VIFP
Universal Quality Index [18]	UQI
Noise Quality Measure [19]	NQM
Weighted Signal to Noise Ratio [19] Video Quality Metric [20]	WSNR VQM ^{NTIA}
Video Multimethod Assessment Fusion [10]	VMAF

Results - 1

Accuracy comparison

Dataset	Category	Exponentia	<u>.</u>		Linear			Logistic			
		$\frac{1}{R^2}$	Adj. R ²	RMSE	\mathbb{R}^2	Adj. R ²	RMSE	R ²	Adj. R ²	RMSE	
Ultrasound Videos	Expert	0.8032	0.8004	11.1736	0.8620	0.8601	9.3557	0.8544	0.8502	9.680	
	Non-Expert	0.8334	0.8310	8.7630	0.8862	0.8846	7.242	0.8791	0.8756	7.5199	
WCE Videos	Expert	0.9214	0.9204	3.8859	0.9267	0.9258	4.9820	0.9268	0.9239	3.7994	
	Non-Expert	0.9501	0.9494	3.0967	0.9433	0.9426	5.8556	0.9501	0.9481	3.1370	

Results for fitting the VMAF measurements to the subjective DMOS.

Comparison of VMAF with other FR-VQMs.

Dataset	Scores	CC	PSNR	SSIM	MS-SSIM	VSNR	WSNR	NQM	UQI	VIF	VIFP	IFC	VQM NTIA	VMAF
Ultra-sound	Experts	PLCC	0.9109	0.9264	0.8570	0.8925	0.9123	0.8961	0.9292	0.9258	0.8887	0.8644	0.8080	0.9056
		SROCC	0.9331	0.9375	0.8907	0.9139	0.9251	0.9090	0.9251	0.9382	0.8997	0.8926	0.8368	0.8941
	Non-experts	PLCC	0.8896	0.9208	0.8668	0.8888	0.9173	0.9233	0.9520	0.9431	0.8796	0.8446	0.8146	0.9220
		SROCC	0.9280	0.9383	0.8899	0.9277	0.9354	0.9464	0.9495	0.9663	0.9047	0.8906	0.8606	0.9186
WCE	Experts	PLCC	0.8039	0.6840	0.8366	0.6055	0.8010	0.7158	0.8701	0.9016	0.8955	0.8844	0.7764	0.9627
		SROCC	0.8611	0.8063	0.9127	0.6571	0.8709	0.8257	0.8930	0.9424	0.9263	0.9482	0.8426	0.9763
	Non-experts	PLCC	0.8257	0.7232	0.8696	0.6204	0.7963	0.7371	0.8909	0.9238	0.9227	0.9020	0.7578	0.9712
	-	SROCC	0.8642	0.8129	0.9247	0.6474	0.8774	0.8311	0.9061	0.9533	0.9408	0.9525	0.8402	0.9796

Results - 2

Scatter plots

Observations and proposed future steps

- Limited number of scores from experts in available datasets
- The level of expertise of the "experts" influences the quality scores (not all expert subjects are equal!)
- More datasets with videos assessed by a wide range of experts are required

References

- A Raj, NA Shah, AK Tiwari, MG Martini, Multivariate Regression-Based Convolutional Neural Network Model for Fundus Image Quality Assessment, *IEEE Access* 8, 2020, 57810-57
- Raj, A K Tiwari, MG Martini, Fundus image quality assessment: survey, challenges, and future scope, *IET Image Processing* 13 (8), 2019. 1211-1224
- Usman, M. A., & Martini, M. G. (2019). On the suitability of VMAF for quality assessment of medical videos: Medical ultrasound & wireless capsule endoscopy. *Computers in biology and medicine*, *113*, 103383.
- Lévêque, L., Liu, H., Baraković, S., Husić, J. B., Martini, M., Outtas, M., ... & Pinheiro, A. (2018, May). On the subjective assessment of the perceived quality of medical images and videos. In 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX) (pp. 1-6). IEEE.
- Kara, P. A., Kovacs, P. T., Vagharshakyan, S., Martini, M. G., Imre, S., Barsi, A., ... & Balogh, T. (2017). Perceptual quality of reconstructed medical images on projection-based light field displays. In *eHealth 360*° (pp. 476-483). Springer, Cham.
- Usman, M. A., Usman, M. R., & Shin, S. Y. (2017). Quality assessment for wireless capsule endoscopy videos compressed via HEVC: From diagnostic quality to visual perception. *Computers in biology and medicine*, *91*, 112-134.
- Nasr, K.M. and Martini, M.G., 2017. A visual quality evaluation method for telemedicine applications. *Signal Processing: Image Communication*, *57*, pp.211-218.
- M. Razaak and M.G. Martini, "CUQI: Cardiac Ultrasound Quality Index," SPIE Journal of Medical Imaging, 2016.
- M. Razaak, M.G. Martini and K. Savino, "A Study on Quality Assessment for Medical Ultrasound Video Compressed via HEVC," *IEEE Journal of Biomedical and Health Informatics (J-BHI)*, vol. 18, no. 5, pp. 1552-1559, Sep 2014.

Thank you!

On the suitability of VMAF for quality assessment of medical videos: Medical ultrasound & wireless capsule endoscopy

Arslan Usman and Maria Martini

Presenter:

Prof Maria Martini Wireless Multimedia and Networking Research Group Kingston University, London, UK

