



# Quality Assessment of Gaming Videos Compressed via AV1

Darkhan Ashimov, Maria Martini and Nabajeet Barman

School of Computer Science and Mathematics, Kingston University, London

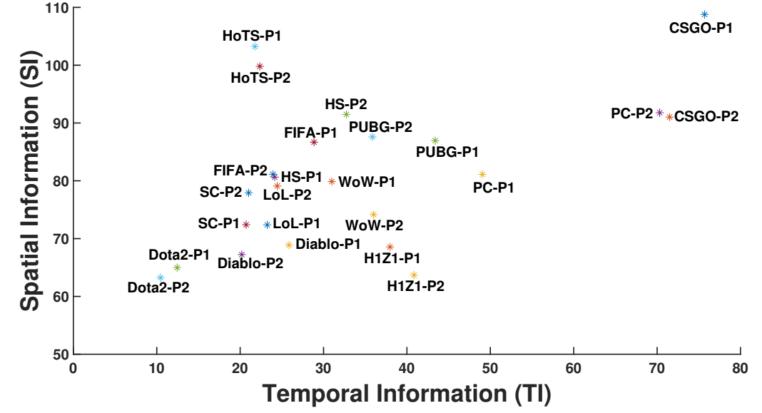
> VQEG Meeting 14th Dec 2020

# Introduction

Video Codec Comparison

- H.264 one of the most widely used video codecs nowadays
- HEVC successor of H.264, superior codec compression efficiency as compared to H.264
- AV1 very recently developed royalty free codec

# **Motivation**

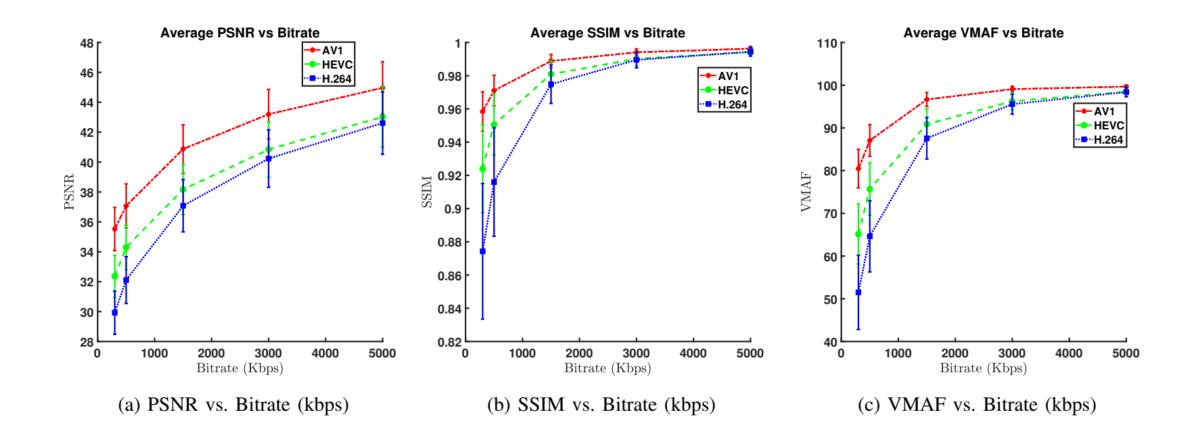

- AV1 comparative performance evaluations in the literature were limited to natural content – contradicting results on performance as compared to HEVC
- Previous comparative studies on codec compression efficiency for gaming content were limited to H.264, VP9 and HEVC (see e.g. [*Barman, Martini, QoMEX 2017*])
- Gaming and Synthetic content is affected differently by compression (see e.g. [*Barman, Martini, Zadtootaghaj, Möller, Lee, QoMEX 2018*])

## **Source Sequences**

#### GamingVideoSET

- 24 reference gaming videos
- 1920x1080
- 30 fps
- 30 seconds

[Barman, Zadtootaghaj, Schmidt, Martini, Möller, NetGames 2018]




# **Encoding Settings Summary**


| Parameter                      | Value                      |  |  |
|--------------------------------|----------------------------|--|--|
| Duration                       | 30 sec                     |  |  |
| Resolution                     | 1080p                      |  |  |
| Bitrates (kbps)                | 300, 500, 1500, 3000, 5000 |  |  |
| Frame Rate                     | 30.00                      |  |  |
| Encoder                        | FFmpeg                     |  |  |
| Encoding Mode                  | CBR                        |  |  |
| Video Compression<br>Standards | H.264, HEVC, AV1           |  |  |
| Preset                         | default (medium)           |  |  |

- Constant Bitrate Encoding achieved by *—minrate* and *—maxrate* parameters
- Tiles 2x2 used for faster decoding performance

#### **Results** Objective Quality Values







**Results** Objective vs. Subjective (MOS) Scores - Correlation

| Metrics | PSNR |       | SSIM |       | VMAF |       |
|---------|------|-------|------|-------|------|-------|
| Encoder | PLCC | SROCC | PLCC | SROCC | PLCC | SROCC |
| H.264   | 0.77 | 0.71  | 0.51 | 0.75  | 0.94 | 0.92  |
| HEVC    | 0.86 | 0.93  | 0.80 | 0.94  | 0.95 | 0.93  |
| AV1     | 0.91 | 0.93  | 0.74 | 0.96  | 0.95 | 0.99  |

# **Conclusion and Future Work**

- AV1 results in the best quality for most bitrates and contents considered
- The performance gain is particularly evident for the lower range of the bitrates considered
- Comparative performance comparison of codec compression efficiency for higher bit-depth (10 bit), HDR gaming content is still an open issue and is left for a future work

# References

- Ashimov, D., Martini, M. G., & Barman, N. (2020, May). Quality assessment of gaming videos compressed via AV1. In 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX) (pp. 1-4). IEEE.
- Pezzulli, S., Martini, M. G., & Barman, N. (2020). Estimation of Quality Scores from Subjective Tests-beyond Subjects' MOS. *IEEE Transactions on Multimedia*, published ahead of print.
- Barman, N., Schmidt, S., Zadtootaghaj, S., Martini, M. G., & Möller, S. (2018, June). An evaluation of video quality assessment metrics for passive gaming video streaming. In *Proceedings of the 23rd packet video workshop* (pp. 7-12).
- Barman, N., Martini, M. G., Zadtootaghaj, S., Möller, S., & Lee, S. (2018, May). A comparative quality assessment study for gaming and non-gaming videos. In 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX) (pp. 1-6). IEEE.
- Barman, N., Zadtootaghaj, S., Schmidt, S., Martini, M. G., & Möller, S. (2018, June). GamingVideoSET: a dataset for gaming video streaming applications. In 2018 16th Annual Workshop on Network and Systems Support for Games (NetGames) (pp. 1-6). IEEE.
- Barman, N., & Martini, M. G. (2017, May). H. 264/MPEG-AVC, H. 265/MPEG-HEVC and VP9 codec comparison for live gaming video streaming. In 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX) (pp. 1-6). IEEE.

Kingston University London

# Thank you



Part of the work leading to this presentation has received funding from the European Commission (project H2020-643072 QoE-NET)