

Quality Enhancement of Gaming Content using Generative Adversarial Networks

Nasim Jamshidi[¥], <u>Saman Zadtootaghaj</u>[¥], Nabajeet Barman^I, Steven Schmidt[¥],

Maria Martini[†], Sebastian Moller[¥]

[¥]Quality and Usability Lab, Berlin Institute of Technology, Germany

⁺Kingston University, London, UK

VQEG Meeting, 9th March 2020

Image Enhancement Techniques

- Deblocking-oriented
 - E.g. Applying BM3D (block-matching and 3D filtering) [1]
 - Using Wavelets-based [2]
- Deep learning-based (Super Resolution Task)
 - CNN based methods
 - GANs-based methods

[1]. Self-learning-based post-processing for image/video deblocking via sparse representation

[2]. A deblocking algorithm for JPEG compressed images using overcomplete wavelet representations

Super Resolution Tasks

CNN based methods

 DnCNNs [1] → for deblocking of Gaussian denoising with unknown noise level and Super resolution task

GAN based methods

 SRGAN [2] → Capable of inferring photo-realistic natural images for 4× upscaling factors

Before Enhancement

After Enhancement

berlir

DnCNNs

- [1]. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
- [2]. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Tasks

Bicubic (21.59dB/0.6423)

SRGAN (21.15dB/0.6868)

Original

Usability

Lab

Figure - Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Loss Function

Pixel-based vs Perceptual-based

- Perceptual quality or reconstruction accuracy?
- FR metric or NR metric for evaluation?

Figure - Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Page 5

Network

(21.15dB/0.6868)

Gaming Content

Special Temporal and Spatial Information

- Game is a **rule-based** system that has special characteristics.
- A game is usually constructed from a **pool of predesigned objects** which result in different level of details.
- A game has a certain level of abstraction, and that does not vary much during the gameplay.
- Many games have specific motion pattern, e.g. racing game or side scrolling games.

GAN for Enhancement of Gaming Content Research Questions

- Investigate the performance of GANs for quality enhancement of gaming content
 - □ **Content Diversity**: Can we have better enhancement for a specific game?
 - **Enhancement Power**: How much enhancement we may gain?
 - Blurriness vs. Blockiness: Is there any difference in enhancement of different image artifact?

GAN for Enhancement of Gaming Content Updating the model

- We used SRGAN architecture
 - Updated the loss function
 - Used U-NET for generator block
 - Used deeper CNN for Discriminator

GAN for Enhancement of Gaming Content Generator

GAN for Enhancement of Gaming Content Loss Function

Content Loss: Euclidean distance between the feature representations

of a generated image and the reference image

- □ Feature map of the last convolution before max-pooling (VGG19)
- □ Adversarial Loss: from discriminator network
- **Quality Loss**: Pretrained VGG19 for quality task using VMAF.

GAN for Enhancement of Gaming Content Datasets

- Part-1: The dataset is created based on 100k image patches which are extracted from a single game, League of Legends (LoL).
- Part-2: The dataset is created based on 100k image patches which are extracted from 12 different video games.
- Part-3: The dataset is created based on 100k image patches which are extracted from LoL, but consists of two sub-parts
 - Blur: consisting of patches extracted from 480p and 720p videos up-scaled to 1080p videos using bicubic method.
 - Blockiness: consisting of patches extracted from frames from 1080p
 videos encoded at various bitrate levels.

GAN for Enhancement of Gaming Content Patch Selection

Results Observation

- Perceptual Quality vs. Image reconstruction
 - Using pixel-wise metrics in the loss function allows the model to predict the text in the image well
- □ Add-up Distortion:
 - □ If the quality is already high, we observed additional distortion

GAN for Enhancement of Gaming Content Enhancement Power

- Dataset Part-1:
 - Class 1 and 2 consisting of frames with Blockiness artifact with VMAF values range between 20 40 and 40-60 respectively
 - Class 3 and 4 consisting of frames with Blurriness artifact with VMAF values range between 20 - 40 and 40-60 respectively.

	NIQE		PIQE	
	Distorted	Enhanced	Distorted	Enhanced
Class-1	5.5	2.79	70.67	24.1
Class-2	3.69	2.73	56.1	18.06
Class-3	5.8	2.69	74.8	27.21
Class-4	3.94	2.62	61.36	20.1

GAN for Enhancement of Gaming Content Content Diversity

- **Comparing Dataset Part-1 and Part-2**:
 - Class 1 and 2 consisting of frames with Blockiness artifact with VMAF values range between 20 40 and 40-60 respectively
 - Class 3 and 4 consisting of frames with Blurriness artifact with VMAF values range between 20 - 40 and 40-60 respectively.

	NIQE			
	Distorted	Enhanced Part-1	Enhanced Part-2	
Class 1	5.5	2.79	3.21	
Class 2	3.69	2.73	3.32	
Class 3	5.8	2.69	3.11	
Class 4	3.94	2.62	3.91	

GAN for Enhancement of Gaming Content Blurriness vs. Blockiness

- Dataset Part-3:
 - Selected 40 pairs of LoL frames with similar quality level in terms of VMAF, one part with blockiness and the other with blurriness artifacts.
 - □ Class-1 with VMAF value ranges from 20 to 40.
 - □ Class-2 with VMAF value ranges from 40 to 60.

	NIQE Improvement		PIQE Improvement	
	Bluriness	Blockiness	Bluriness	Blockiness
Class-1	2.68	2.21	45.15	37.36
Class-2	1.54	1.14	34.35	28.16

GAN for Enhancement of Gaming Content Subjective Quality Assessment

- Dataset Part-3:
 - □ Selected 2 reference frames from the game LoL
 - □ 9 distorted frames are selected from each reference frame

Discussion and Conclusion

- Copy-right issue
- Video quality enhancement
- There is a lot to do on loss function
- Mixture of deblocking and deep learning methods might be a good option for image quality enhancement of blockiness artifact
- Gaming content benefits from similarity of content
- Research on lighter version of deep learning models for enhancement technique

Thank you for your Attention!! Any Question?

Saman Zadtootaghaj

saman.zadtootaghaj@gu.tu-berlin.de

Visit <u>www.qu.tu-berlin.de</u> for more information.

