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MOTIVATION

❖ Increase in popularity of Gaming videos and many vendors such as

Twitch.tv, YouTube Gaming, Hitbox.tv.

❖ Due to advancement in hardwares and software, games are getting

more complex.

❖ Gaming videos consist of synthetic and artificial content.
❖ More attention for Machine-learning based quality evaluation methods.



Quality Assessment(QA) Metrics

❖ Full Reference : 
➢ uses a complete reference signal information.

❖ Reduced Reference : 
➢ uses a part of the reference signal.

❖ No Reference :
➢ does not use a reference signal.
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VQA metrics comparison

Traditional NR metrics like BRISQUE, NIQE failed to predict gaming content.
Dataset used : GamingVideoSET.
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Existing NR Metrics for Gaming content : NR-GVQM

NR-GVQM Architecture.

● Uses Frame-level features and model with VMAF.

● Pre-Trained BRISQUE, NIQE score.

● Only GamingVideoSET data for model development.
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Existing NR Metrics for Gaming content : NOFU

N
NOFU Framework.

● Uses MOS score of 90 videos from GamingVideoSET.
● Temporal pooling approach before feeding to ML model.
● Lacks validation set.
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Existing NR Metrics for Gaming content : NR-GVSQI

NR-GVSQI Framework.

● Uses GamingVideoSET and KUGVD dataset.
● Proper training and validation.
● Uses pre trained BRISQUE, NIQE.

Seite 7



Why need new NR metrics for gaming content!!

❏ Traditional NR metrics din’t able to predict the quality of Gaming
content with high performance.

❏ Lack of Training and Validation support.

❏ Performance of traditional metrics like NIQE, BRISQUE haven’t
checked on training for gaming based contents.

❏ Lack of Lightweight NR gaming metrics.
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Proposed Solution
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Proposed Solution: Stage 1
❖ Focus on Spatial aspect of the Video Data.

❖ Feature Extraction at Frame level:
➢ BRISQUE Feature : 

■ Total of 36 features extracted.
■ Retain the BRISQUE model on gaming content.
■ Find presence of distortion.

➢ Histogram of Oriented Gradients (HOG)  Features : 
■ Total of 36 features extracted. 
■ Metrics for texture descriptor i.e  edge detection. 

➢ Grey Level Co-occurrence Matrix(GLCM) Features:  
■ Total of 4 features extracted. 
■ Metrics for texture analysis.

❖ Data Processing: Finding Outliers.
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Feature Selection and Modelling
● TrainSet : GamingVideoSET with 

351000 frames.

● TestSet: KUGVD with 81000 frames.

● Label: NdNetGaming.

● ML Algorithm: XgBoost Regressor, SVR.

● Best selected model saved to use in 
Stage 2.

Seite 11

Features PLCC RMSE

F1 0.82848 0.47848

F2 -0.51723 0.98857

F3 -0.57449 0.98529

F1+F2 0.50244 0.73867

F1+F3 0.90571 0.36214

F1+F2+F3 0.90764 0.35861

F1: BRISQUE, F2: HOG, F3: GLCM



Proposed Solution: Stage 1 

Per Frame Result:
● TestSet: KUGVD data with 

NdNetgaming Score Per 
Frame

● SROCC: 0.967
● PLCC is : 0.968
● RMSE : 0.064
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Proposed Solution: Stage 1

Video Level Result:
● TestSet: KUGVD data with pooled 

NdNetgaming Score.
● SROCC: 0.871
● PLCC is : 0.842
● RMSE : 0.321
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Proposed Solution: Stage 2

❖ Focus on Temporal aspect of the Video Data.

❖ Feature Extraction at Video level:
■ Absolute Motion using block Motion.
■ Temporal Information(TI)
■ Trained model from Stage1 as an input.

❖ Data Processing: Finding Outliers.
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Feature Extraction at Video Level

❖ Selected based on F score. 

❖ F score is measure for feature

selection.

❖ Features notation: 

➢ f0: Motion Vector

➢ f1: Predicted pooled score

➢ f2: TI
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Scatter plot of MOS scores 

● Trained on MOS values of 90 videos
from GVSET.

● Tested on KUGVD data with 90
MOS values.

● All the games that we have
subjective results are excluded for
training part of stage1.
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Scatter plot of MOS scores

● Trained on MOS values of 90 videos from
KUGVD.

● Tested on GVSET data with 90 MOS
values.

● All the games that we have subjective
results are excluded for training part of
stage1.
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Result
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Conclusion

● Training BRISQUE on gaming content enhances the performance of model.

● Two steps model development helped in robust model.

● Proposed model is lightweight and can be used in real time.

● Designed machine learning based NR metrics have a high correlation with

subjective (MOS) score.
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Thank You !!
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