nofu – A Lightweight No-Reference Pixel Based Video Quality Model for Gaming Content.

Steve Göring, Rakesh Rao Ramachandra Rao, Alexander Raake;

Audiovisual Technology Group, Technische Universität Ilmenau, Germany; Email: [steve.goering, rakesh-rao.ramachandra-rao, alexander.raake]@tu-ilmenau.de

based on QoMEX 2019 paper: https://bit.ly/31i0jcZ

October 16, 2019

technische Universität Ilmenau

Motivation – Gaming Streams

 \blacktriangleright beside classical video streams \rightarrow gaming content:

- $\circ\,$ e.g. Youtube Gaming, Twitch, \ldots
- \blacktriangleright gaming videos \rightarrow
 - additional requirements /properties: Zadtootaghaj et al. [9]
 - $\circ~$ live streaming, low delay, low stalling,
 - $\circ~$ high video quality, cgi content, streaming technology
- ► focus on video quality of gaming streams

 \rightarrow gaming qoe and gaming video quality

▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]

- \circ video quality factors: content (cgi), encoding (fast),
- interaction: delay, ...
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - $\circ\,$ video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

> nofu

- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - $\circ\,$ video quality factors: content (cgi), encoding (fast),
 - $\circ~$ interaction: delay, \ldots
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

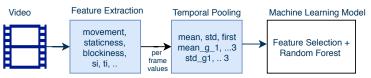
- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - $\circ\,$ video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - fast, accurate, no-reference quality estimation

- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - $\circ\,$ video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - o fast, accurate, no-reference quality estimation

- several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - $\circ\,$ video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - $\circ\,$ fast, accurate, no-reference quality estimation

- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - $\circ\,$ video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - $\circ~$ fast, accurate, no-reference quality estimation

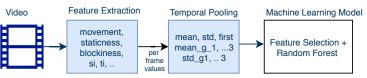
- ▶ several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]
 - $\circ\,$ video quality factors: content (cgi), encoding (fast),
 - interaction: delay, ...
- ▶ objective full-reference metrics: good results: Barman et al. [1, 2, 3]
 - VMAF best; problem: reference usually not available
- ► for live/adaptive encoding:
 - $\circ\;$ fast, accurate, no-reference quality estimation



► features:

- \circ si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
- \circ cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ▶ speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - \circ first, mean, std, groups g = [1, 2, 3]: mean_g, std_g
 - $\circ
 ightarrow$ duration independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF
- additional no-ref model: brisque+niqe features, similar pipeline
 - ightarrow Evaluation and used Dataset

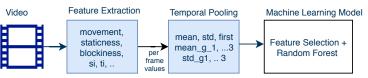
TECHNISCHE U



► features:

- si'+ti^M [6], fft' [7], staticness', blockiness'[5],
- o cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- **speedup**: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - \circ first, mean, std, groups g=[1,2,3]: mean $_g$, std $_g$
 - $\circ \rightarrow$ duration independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF
- ▶ additional no-ref model: brisque+niqe features, similar pipeline → Evaluation and used Dataset

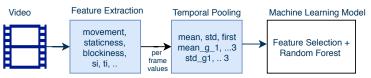
TECHNISCHE U



► features:

- \circ si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
- cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- **speedup**: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - $\circ~$ first, mean, std, groups g=[1,2,3]: mean $_g$, std $_g$
 - $\circ
 ightarrow$ duration independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF
- additional no-ref model: brisque+niqe features, similar pipeline
 Evaluation and used Dataset

TECHNISCHE U

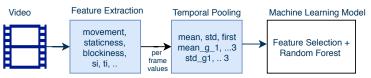


► features:

- $\circ~si'+ti^{M}$ [6], fft' [7], staticness', blockiness'[5],
- cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ▶ speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - \circ first, mean, std, groups g = [1,2,3]: mean $_g$, std $_g$
 - $\circ
 ightarrow$ duration independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF

- additional no-ref model: brisque+niqe features, similar pipeline \rightarrow Evaluation and used Dataset

TECHNISCHE U

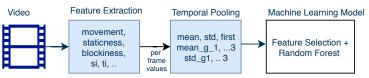


► features:

- \circ si'+ti^M [6], fft' [7], staticness', blockiness'[5],
- cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- speedup: 360p center crop of input video
- ► temporal pooling: 12 feature values per frame
 - $\circ~\textit{first},~\textit{mean},~\textit{std},~\textit{groups}~g = [1,2,3]:~\textit{mean}_{g},~\textit{std}_{g}$
 - $\circ
 ightarrow {\sf duration}$ independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF

- additional no-ref model: brisque+niqe features, similar pipeline \rightarrow Evaluation and used Dataset

TECHNISCHE

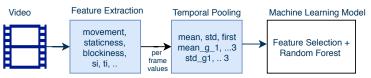


► features:

- \circ si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
- \circ cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ▶ speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - $\circ~\textit{first},~\textit{mean},~\textit{std},~\textit{groups}~g = [1,2,3]:~\textit{mean}_g,~\textit{std}_g$
 - $\circ
 ightarrow$ duration independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF

- additional no-ref model: brisque+niqe features, similar pipeline \rightarrow Evaluation and used Dataset

TECHNISCHE

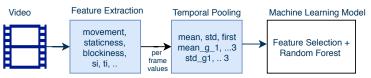


► features:

- \circ si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
- cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ▶ speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - $\circ~\textit{first},~\textit{mean},~\textit{std},~\textit{groups}~g = [1,2,3]:~\textit{mean}_g,~\textit{std}_g$
 - $\circ~\rightarrow$ duration independent 108 values per sequence
- ▶ ML algorithm: feature selection + RF

- additional no-ref model: brisque+niqe features, similar pipeline \rightarrow Evaluation and used Dataset

TECHNISCHE

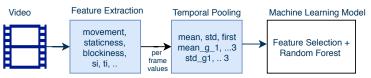


► features:

- \circ si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
- cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ▶ speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - $\circ~\textit{first},~\textit{mean},~\textit{std},~\textit{groups}~g = [1,2,3]:~\textit{mean}_g,~\textit{std}_g$
 - $\circ~\rightarrow$ duration independent 108 values per sequence
- ► ML algorithm: feature selection + RF

- additional no-ref model: brisque+niqe features, similar pipeline \rightarrow Evaluation and used Dataset

TECHNISCHE



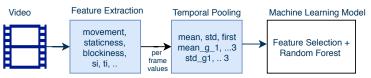
► features:

- \circ si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
- cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ▶ speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - $\circ~\textit{first},~\textit{mean},~\textit{std},~\textit{groups}~g = [1,2,3]:~\textit{mean}_g,~\textit{std}_g$
 - $\circ~\rightarrow$ duration independent 108 values per sequence
- ► ML algorithm: feature selection + RF

► additional no-ref model: brisque+niqe features, similar pipeline → Evaluation and used Dataset

TECHNISCHE

II MENAL



► features:

- \circ si¹+ti^M [6], fft¹ [7], staticness¹, blockiness¹[5],
- cubrow-{first,last}^M, cubcol-{first,last}^M, blockmotion^M[5]
- ▶ speedup: 360p center crop of input video
- ▶ temporal pooling: 12 feature values per frame
 - $\circ~\textit{first},~\textit{mean},~\textit{std},~\textit{groups}~g = [1,2,3]:~\textit{mean}_g,~\textit{std}_g$
 - $\circ~\rightarrow$ duration independent 108 values per sequence
- ► ML algorithm: feature selection + RF

- additional no-ref model: brisque+niqe features, similar pipeline \rightarrow Evaluation and used Dataset

TECHNISCHE

- $\circ~$ 24 full-HD sources, 576 distorted videos, 90 with subjective scores
- two main evaluations: 10-fold cross validation and source fold:
 - $\circ~(1)$ based on VMAF, (2) based on subjective scores
 - \rightarrow MOS prediction

► GamingVideoSET: *Barman et al.* [4]:

 $\circ~$ 24 full-HD sources, 576 distorted videos, 90 with subjective scores

▶ two main evaluations: 10-fold cross validation and source fold:

- $\circ~(1)$ based on VMAF, (2) based on subjective scores
 - \rightarrow MOS prediction

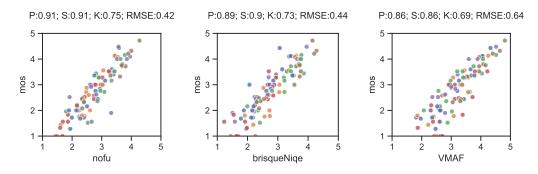
- $\circ~$ 24 full-HD sources, 576 distorted videos, 90 with subjective scores
- two main evaluations: 10-fold cross validation and source fold:
 - \circ (1) based on VMAF, (2) based on subjective scores
 - ightarrow MOS prediction

- $\circ~$ 24 full-HD sources, 576 distorted videos, 90 with subjective scores
- ▶ two main evaluations: 10-fold cross validation and source fold:
 - $\circ~(1)$ based on VMAF, (2) based on subjective scores
 - \rightarrow MOS prediction

- $\circ~$ 24 full-HD sources, 576 distorted videos, 90 with subjective scores
- ▶ two main evaluations: 10-fold cross validation and source fold:
 - $\circ~(1)$ based on VMAF, (2) based on subjective scores
 - \rightarrow MOS prediction

Evaluation – MOS prediction

technische Universität Ilmenau



pearson (P), spearman (S), kendall (K) and RMSE

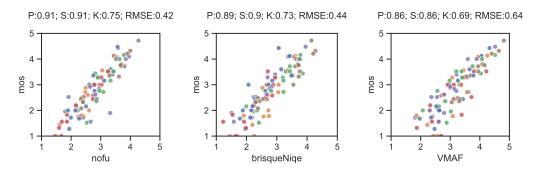
nofu > brisque+niqe > vmaf > ssim

▶ source video fold evaluation: nofu > brisque+niqe

ightarrow Conclusion

Evaluation – MOS prediction

CC TECHNISCHE UNIVERSITÄT ILMENAU



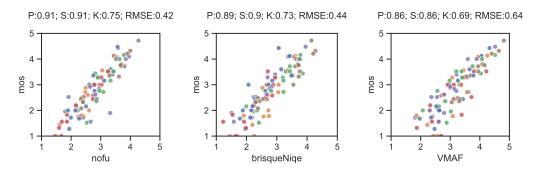
pearson (P), spearman (S), kendall (K) and RMSE

- nofu > brisque+niqe > vmaf > ssim
- ▶ source video fold evaluation: nofu > brisque+niqe

ightarrow Conclusi

Evaluation – MOS prediction

technische Universität Ilmenau



pearson (P), spearman (S), kendall (K) and RMSE

- ▶ nofu > brisque+niqe > vmaf > ssim
- \blacktriangleright source video fold evaluation: nofu > brisque+niqe
 - $\rightarrow \text{Conclusion}$

5/10

▶ introduced **nofu**: no-reference model for gaming video quality

- $\circ~\ensuremath{\textit{features}}$ quality-related and gaming-specific
- temporal pooling + 360p center crop
- machine learning based
- ▶ evaluation using GamingVideoSET [4]
 - nofu outperforms other no-ref models + VMAF
 - per source fold: promising results
- ▶ open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- ▶ evaluation using GamingVideoSET [4]
 - nofu outperforms other no-ref models + VMAF
 - per source fold: promising results
- ▶ open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- ▶ evaluation using GamingVideoSET [4]
 - \circ **nofu** outperforms other no-ref models + VMAF
 - per source fold: promising results
- ▶ open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- ▶ evaluation using GamingVideoSET [4]
 - nofu outperforms other no-ref models + VMAF
 - per source fold: promising results
- ▶ open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- ▶ evaluation using GamingVideoSET [4]
 - \circ **nofu** outperforms other no-ref models + VMAF
 - per source fold: promising results
- ▶ open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- ▶ evaluation using GamingVideoSET [4]
 - $\circ~$ nofu outperforms other no-ref models +~ VMAF
 - per source fold: promising results
- ▶ open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- evaluation using GamingVideoSET [4]
 - $\circ~$ nofu outperforms other no-ref models +~ VMAF
 - $\circ\,$ per source fold: promising results
- ▶ open and next steps:
 - include delay/latency, bitstream features, combine nofu+brisque+niqe

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- evaluation using GamingVideoSET [4]
 - $\circ~$ nofu outperforms other no-ref models +~ VMAF
 - $\circ\,$ per source fold: promising results
- open and next steps:
 - $\circ~$ include delay/latency, bitstream features, combine ${\bf nofu+brisque+niqe}$
 - $\circ\,$ use features/approach for different tasks

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- evaluation using GamingVideoSET [4]
 - $\circ~$ nofu outperforms other no-ref models + VMAF
 - $\circ\,$ per source fold: promising results
- open and next steps:
 - $\circ~$ include delay/latency, bitstream features, combine ${\bf nofu}{+}{\rm brisque}{+}{\rm niqe}$
 - use features/approach for different tasks

- ▶ introduced **nofu**: no-reference model for gaming video quality
 - features: quality-related and gaming-specific
 - temporal pooling + 360p center crop
 - machine learning based
- evaluation using GamingVideoSET [4]
 - $\circ~$ nofu outperforms other no-ref models + VMAF
 - $\circ\,$ per source fold: promising results
- open and next steps:
 - $\circ~$ include delay/latency, bitstream features, combine ${\bf nofu}{+}{\rm brisque}{+}{\rm niqe}$
 - $\circ~$ use features/approach for different tasks

Thank you for your attention

..... are there any questions?

References I

- Nabajeet Barman and Maria G Martini. "H. 264/MPEG-AVC, H. 265/MPEG-HEVC and VP9 codec comparison for live gaming video streaming". In: *Quality of Multimedia Experience (QoMEX), 2017 Ninth International Conference on*. IEEE. IEEE, 2017, pp. 1–6.
- [2] Nabajeet Barman et al. "A Comparative Quality Assessment Study for Gaming and Non-Gaming Videos". In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). IEEE. 2018, pp. 1–6.
- [3] Nabajeet Barman et al. "An evaluation of video quality assessment metrics for passive gaming video streaming". In: *Proceedings of the 23rd Packet Video Workshop*. ACM. 2018, pp. 7–12.
- [4] Nabajeet Barman et al. "GamingVideoSET: a dataset for gaming video streaming applications". In: 2018 16th Annual Workshop on Network and Systems Support for Games (NetGames). IEEE. 2018, pp. 1–6.

References II

- [5] Steve Göring et al. "Analyze And Predict the Perceptibility of UHD Video Contents". In: *Electronic Imaging, Human Vision Electronic Imaging* (2019).
- [6] ITU-T. Subjective video quality assessment methods for multimedia applications. Serie P: Telephone Transmission Quality, Telephone Installations, Local Line Networks. Vol. Recommendation ITU-T P.910. International Telecommunication Union. Geneva, 2008.
- [7] Ioannis Katsavounidis, Anne Aaron, and David Ronca. "Native resolution detection of video sequences". In: Annual Technical Conference and Exhibition, SMPTE 2015. SMPTE. 2015, pp. 1–20.
- [8] Sebastodes Möller, Steven Schmidt, and Saman Zadtootaghaj. "New ITU-T Standards for Gaming QoE Evaluation and Management". In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX). IEEE. 2018, pp. 1–6.

TECHNISCHE I

References III

[9] Saman Zadtootaghaj et al. "A classification of video games based on game characteristics linked to video coding complexity". In: 2018 16th Annual Workshop on Network and Systems Support for Games (NetGames). IEEE. 2018, pp. 1–6.

