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Motivation – Gaming Streams

I beside classical video streams → gaming content:

◦ e.g. Youtube Gaming, Twitch, . . .

I gaming videos →

◦ additional requirements /properties: Zadtootaghaj et al. [9]

◦ live streaming, low delay, low stalling,

◦ high video quality, cgi content, streaming technology

I focus on video quality of gaming streams

→ gaming qoe and gaming video quality

1 / 10



Gaming QoE and video quality

I several influencing factors: Möller, Schmidt, and Zadtootaghaj [8]

◦ video quality factors: content (cgi), encoding (fast),

◦ interaction: delay, . . .

I objective full-reference metrics: good results: Barman et al. [1, 2, 3]

◦ VMAF best; problem: reference usually not available

I for live/adaptive encoding:

◦ fast, accurate, no-reference quality estimation

→ nofu
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nofu – Features and Approach
movement, 
staticness, 
blockiness, 

si, ti, .. 

mean, std, first 
mean_g_1, ...3 

std_g1, .. 3 

Feature Extraction 

per  
frame
values

Video Temporal Pooling

Feature Selection + 
Random Forest  

Machine Learning Model

I features:
◦ siI+tiM [6], fftI [7], staticnessI , blockinessI [5],
◦ cubrow-{first,last}M , cubcol-{first,last}M , blockmotionM [5]

I speedup: 360p center crop of input video
I temporal pooling: 12 feature values per frame
◦ first, mean, std , groups g = [1, 2, 3]: meang , stdg

◦ → duration independent 108 values per sequence

I ML algorithm: feature selection + RF
I additional no-ref model: brisque+niqe features, similar pipeline

→ Evaluation and used Dataset
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Evaluation – Dataset

I GamingVideoSET: Barman et al. [4]:

◦ 24 full-HD sources, 576 distorted videos, 90 with subjective scores

I two main evaluations: 10-fold cross validation and source fold:

◦ (1) based on VMAF, (2) based on subjective scores

→ MOS prediction
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Evaluation – MOS prediction
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pearson (P), spearman (S), kendall (K) and RMSE

I nofu > brisque+niqe > vmaf > ssim

I source video fold evaluation: nofu > brisque+niqe
→ Conclusion
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Conclusion, Summary and Future Work

I introduced nofu: no-reference model for gaming video quality

◦ features: quality-related and gaming-specific

◦ temporal pooling + 360p center crop

◦ machine learning based

I evaluation using GamingVideoSET [4]

◦ nofu outperforms other no-ref models + VMAF

◦ per source fold: promising results

I open and next steps:

◦ include delay/latency, bitstream features, combine nofu+brisque+niqe

◦ use features/approach for different tasks
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Thank you for your attention

. . . . . . are there any questions?
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