

Deconstructing AR applications for 5G

Diego González & Pablo Pérez VQEG Plenary Meeting, Shenzhen, October 2019 What's so new about 5G? Throughput – Latency – Density

eMBB (Enhanced mobile broadband)

https://networks.nokia.com/5g/resources

What's so new about 5G? Architecture

New Radio Access Network

- More frequencies (inc. mmW)
- Carrier aggregation, massive MIMO, ...
- Network slicing

Multi-Access Edge Computing

- Edge cloud
- Virtualized apps
- Low latency

5G Ultra Dense Networks Key Performance Indicators

Ultra Dense Networks research

- RAN PHY/Link/MAC enhancements
 - Technology: mMIMO, mmW, VLC
- Dynamic spectrum management
 - Spectrum sharing and carrier aggregation
- Energy efficiency

• KPIs

- Bandwidth, throughput
- Availability
- Latency
- Energy consumption
- ...

Video Challenges

- Distributed computing
- Low-latency coding
- Remote rendering
- Responsiveness to variable throughput and latency
- KQIs to be defined
 - Quality of the xR Experience
 - Breakdown into factors: interactivity, visual quality, segmentation quality, segmentation delay, etc..

Deconstructing AR From network/system KPIs into QoE

Augmented Reality Telepresence

-

AR Device - Sensor Capture

Hololens 1 – Sensors

- 1 IMU

- 4 Grayscale cameras
- 1 120deg Depth camera
- 1 HD Video Camera
- 4 Channel microphone

Hololens 2 – Sensors

- 1 IMU
- 2 IR Cameras for Eye Tracking
- 4 RGB cameras
- 1-MP ToF Depth sensor
- 1 1080p30 Video Camera
- 5 Channel microphone

AR Device - Sensor Processing

The goal of this block is to accurately localize the AR device and extract 3D understanding from the real environment

Input – Output Analysis Α.

The simplified input-output diagram is:

6 DoF Pose Sensor Processing

3D Mesh

Input	Frequency (Hz)	Raw Data Rate Per Frame	Data Rate (Mbps)
RGB Feed	30 - 60	1920 * 1080 * 3 * 8 bits	15 – 30
Depth Feed	30 - 60	1920 * 1080 * 8 bits	5 - 10
Cloud Mesh	0 (1 Time)	(45 + 13*triangles + 10*vertex)*8 bits	-

Output	Frequency (Hz)	Raw Data Rate Per Frame	Data Rate (Mbps)
6 DoF Pose	30 - 60	3*float + (4 or 12)*float = (208 - 480)bits	0.006 - 0.028
3D Mesh	0.5	(45 + 13*triangles + 10*vertex)*8 bits	-
RGB-D	30 - 60	1920 * 1080 * 4 * 8 bits	20 - 40

Example Room:

- Dimensions: 12.5x3.2x9.2 m
- Vertex Num: 100286
- Triangle Num: 438711 -
- Total Serialized Size: 13.72 Mbit _
- Data Rate: 6.86 Mbits (if all the mesh is updated)

AR Device – Spatial Mapping

The goal of this block is to extract semantics from the 3D scanned environment and place the virtual content in the real world according to such semantics. For instance, if we want to place an avatar sitting down, we need to identify what is a chair, and where the sitting plane is. Device pose

RGB

Aligned Depth

Mesh

A. Input - Output Analysis

The simplified input-output diagram is:

Input	Frequ	ency (Hz)	Raw Data Rate I	Raw Data Rate Per Frame		* In this case,	
RGB Feed	5 - 2	0	1920 * 1080 *	* 3 * 8 bits	15 – 30	updates in the received, so tl	
Aligned Depth Feed	5 – 2	0	1920 * 1080 *	1920 * 1080 * 8 bits		should be mu	
Device Pose	5 - 2	0	208 – 408 bits	5	<< 1 Mbps		
Mesh	0.5 -	1 Hz	(45 + 13*triangles + 10*vertex)*8 bits*		-		
Output		Frequency (H	iz)	Raw Data Rate Per Frame		Data Rate (Mbps)	
6 DoF Pose Virtual Obj	ects	1 Time per	object	3*float + (4 or 12)*float = (2	208 – 480) per objec	ct ~0	
3D Mesh		0.5 – 1 Hz		(45 + 13*triangles + 10*ver	tex)*8 bits*	-	

Spatial

Understanding

3D Mesh

* In this case, only the updates in the mesh(es) are received, so the data rate should be much smaller than in the cloud mesh case

AR Device – Dynamic Occlusion

The goal of this block is to handle the dynamic of occlusion of virtual object. It is a key block in almost every AR application and it is still a problem that has not been solved in the state of the art. It requires high computation power, and extremely low latency to satisfy the very demanding real-time constraints.

* In see-through devices it might be necessary to increase the update frequency of the color/depth feeds to ensure a proper occlusion quality.

** After the room has been scanned and the final optimization si done, is not necessary to keep updating the mesh.

Output	Frequency (Hz)	Raw Data Rate Per Frame	Data Rate (Mbps)
Occlusion Mask	30 – 60 (120?)	1920 * 1080 * (8 – 12)	5 - 15

Calling Device - Sensor Capture

Kinect 1

 Color: 640x480x32bpp @ 30fps Depth: 320x240x16bpp @ 30fps Audio: 16bit @ 16kHz 20 joints per user 	Realsense D435 - Color: 1920x1080 @ 30fps - Depth: 1280x720 @ 30-90 fps - Global Shutter
Kinect 2	Realsense D415
 Color: 1920x1080x16bpp @ 30fps Depth: 512x424x16bpp @ 30fps IR: 512x424x11bpp @ 30fps Latency: 60 ms with processing Audio: 4-mic array with 48kHz 26 joints per user 	 Color: 1920x1080 @ 30fps Depth: 1280x720 @ 30-90 fps Rolling Shutter

RGB Camera Sensor Capture

Calling Device - Gesture Capture

The goal of this block is to track the caller's joints' positions and rotations along with his/her face gestures in real time. The input is the RGB and depth feeds. The output is the real-time update poses of the main face anchors, and the body joints.

A. Input – Output Analysis

The simplified input-output diagram is:

Input	Frequency (Hz)	Raw Data Rate Per Frame	Data Rate (Mbps)
RGB Feed	30 - 60 (120?)*	1920 * 1080 * 3 * 8 bits	15 – 30
Aligned Depth Feed	30 - 60	1920 * 1080 * 8 bits	5 - 10

Output	Frequency (Hz)	Raw Data Rate Per Frame	Data Rate (Mbps)
Joints Poses	30 - 60	(204-480)*(20 or 26) = (4080 – 12480)bits	< 1Mbps
Face Anchors – RGB-D *	30 - 60	1920 * 1080 * 4 * 8 bits	20 - 40
Face Anchors – Only Anchors **	30 - 60	(30 to 100 points)*96 bits = 2880- 9600 bits	< 1Mbps

* Processing done on the receiver side

16 © 2019 Nokia

** Processing done on the sender side

Unity Client Receiver

Input	Frequency (Hz)	Raw Da	ata Rate Per Frame		Data Ra	ate (Mbps)
Occlusion Mask	30 - 60 (120?)	1920	* 1080 * (8 – 12)			5 - 15
Optimized Mesh	1 Time*	(45 +	13*triangles + 10*vertex)*	8 bits	-	
Objects poses	1 Time *	208 -	408 bits per object		-	
Face Anchors – Only Anchors	30 - 60	(30 to	100 points)*96 bits = 288	80- 9600 bits	< 1Mb	ps
Joints Poses	30 - 60	(204-	(204-480)*(20 or 26) = (4080 – 12480)bits			ops
Avatar Model	1 Time	10-10	00MB = 80-800 Mbits		-	
Output			Frequency (Hz)	Data Rate (Mbps)		
Rendered Fra	ame		30 - 60	~50 Mbps		
7 © 2019 Nokia	/ideo (360?)		30-60	15– 30 Mbps	S	

Unity Client Receiver

This is the main app on the sender side. The processing and memory requirements analysis will be done in the future.

Input	Frequency (Hz)	Raw Data Rate Per Frame	Data Rate (Mbps)
Conference Video (360?)	30 - 60	30-60	15– 30 Mbps

Output	Frequency (Hz)	Raw Data Rate Per Frame	Data Rate (Mbps)
Joints Poses	30 - 60	(204-480)*(20 or 26) = (4080 – 12480)bits	< 1Mbps
Face Anchors – RGB-D *	30 - 60	1920 * 1080 * 4 * 8 bits	20 - 40
Face Anchors – Only Anchors **	30 - 60	(30 to 100 points)*96 bits = 2880- 9600 bits	< 1Mbps
Avatar Model	1 Time	10-100MB = 80-800 Mbits	-

AR Holocall Next steps

- Finish breakdown analysis
- Build a (simplified) prototype
- Do some measurements
- Create a first KQI/QoE model

- Contribution to ITU-T standardization?
 - Competition vs collaboration?
 - Interest in Q13? Others?

- Explore generation of open/reference datasets?
 - Leverage existing and future 5G assets of participating members
 - With what purpose?

TeamUp5G

New RAN TEchniques for 5G UltrA-dense Mobile networks

Copyright and confidentiality

The contents of this document are proprietary and confidential property of Nokia. This document is provided subject to confidentiality obligations of the applicable agreement(s).

This document is intended for use of Nokia's customers and collaborators only for the purpose for which this document is submitted by Nokia. No part of this document may be reproduced or made available to the public or to any third party in any form or means without the prior written permission of Nokia. This document is to be used by properly trained professional personnel. Any use of the contents in this document is limited strictly to the use(s) specifically created in the applicable agreement(s) under which the document is submitted. The user of this document may voluntarily provide suggestions, comments or other feedback to Nokia in respect of the contents of this document ("Feedback"). Such Feedback may be used in Nokia products and related specifications or other documentation. Accordingly, if the user of this document gives Nokia Feedback on the contents of this document, Nokia may freely use, disclose, reproduce, license, distribute and otherwise commercialize the feedback in any Nokia product, technology, service, specification or other documentation.

Nokia operates a policy of ongoing development. Nokia reserves the right to make changes and improvements to any of the products and/or services described in this document or withdraw this document at any time without prior notice.

The contents of this document are provided "as is". Except as required by applicable law, no warranties of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose, are made in relation to the accuracy, reliability or contents of this document. NOKIA SHALL NOT BE RESPONSIBLE IN ANY EVENT FOR ERRORS IN THIS DOCUMENT or for any loss of data or income or any special, incidental, consequential, indirect or direct damages howsoever caused, that might arise from the use of this document or any contents of this document.

This document and the product(s) it describes are protected by copyright according to the applicable laws.

Nokia is a registered trademark of Nokia Corporation. Other product and company names mentioned herein may be trademarks or trade names of their respective owners.

