NFLX-LIVE Research Project

Perceptual Optimization using Deep Compression Model

Li-Heng Chen, Christos G. Bampis, Zhi Li, Andrey Norkin and Alan C. Bovik

goal: deploy <u>any</u> perceptual quality model to

optimize "deep" image and video compression

networks.

Quick background on generative modeling

Applications: super-resolution, denoising, frame-rate conversion, compression (recently!)

Deep image compression (Balle *et al.*)

Intuitions behind deep image compression modeling

"pixel/distortion loss" "rate loss"
$$\mathcal{L}_d = \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2 \qquad \qquad \mathcal{L}_r$$

total loss:
$$\mathcal{L}_{total} = \lambda \mathcal{L}_d + \mathcal{L}_r$$

- \rightarrow tradeoff between rate and distortion (RDO)
- → what about other pixel losses?

Perceptual optimization of deep image encoders

- → so far, mostly MSE, SSIM and MS-SSIM optimization
- \rightarrow analytically tractable, differentiable, etc.
- → cannot use more complicated models, like VMAF
- → given the specifics of each metric, can we generalize the approach to any desired metric?

Simple idea: use a pre-trained network

- → train network so that proxy VMAF score matches VMAF
- \rightarrow 3 or 4 layers are enough

Conceptual problem with a pre-trained network

(a) Reconstructed Patches

(b) Waterloo Dataset

(c) BAPPS Dataset

"Adversarial examples"

(a) Source Image

(b) Decoded Image (VMAF_{Prox} = 97.74 and VMAF = 5.35)

Proposed alternating training

BLS Training

In each training step

Training loss intuition

$$\mathcal{L}_{total} = \lambda \mathcal{L}_d + \mathcal{L}_r$$

$$\downarrow$$

$$\mathcal{L}_{total} = \lambda \left[\alpha \mathcal{L}_p + (1 - \alpha) \mathcal{L}_d \right] + \mathcal{L}_r$$

Fixing the adversarial examples

Experimental results

Summary: \	VMAF	BD-rate	(%); ($\alpha =$	0.00154);	Baseline:	BLS	model	optimized	for MSE
------------	------	---------	-------------------	-----------	-----------	-----	-------	-----------	---------

Test image	JPEG	BLS Baseline	BLS _{VMAF Proxy}	JP2K	HEVC Intra
Mean _{Arithmetic}	78.36%	0%	-23.35%	-33.39%	-28.23%
std	20.33%	0%	3.92%	8.77%	12.15%

Future work

- → still need to beat state-of-the-art codecs, such as HEVC intra
- → try on other generative modeling applications, e.g. de-noising, super-resolution, etc.
- → gain better understanding of the distortions generated by these deep models
- → video is a natural next step