Problem with Continuous Model

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

VQEG, Berlin, 2019

(□ > 《母 > 《글 > 《글 > _ 글 _ _)<<

Continuous Model

$$O_{ij} \sim \mathcal{N}(\psi_j + \Delta_i, \sqrt{v_i^2 + \phi_j^2})$$

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

Continuous Model

$$O_{ij} \sim \mathcal{N}(\psi_j + \Delta_i, \sqrt{v_i^2 + \phi_j^2})$$

Let us consider 5 point scale so we have censoring (clipping) and discretization. So the final answer is:

 $U_{ij} = \operatorname{Round}(U_{ij}) \sim F$

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

$O_{ij} \sim \mathcal{N}(\psi_o, \sigma_o)$

We have two parameters, true quality ψ_o and standard deviation for particular PVS and Subject σ_o . o stands for continuous model.

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

$O_{ij} \sim \mathcal{N}(\psi_o, \sigma_o)$

We have two parameters, true quality ψ_o and standard deviation for particular PVS and Subject σ_o . *o* stands for continuous model.

After founding the new variable U has certain distribution with different parameters ψ_u and σ_u .

Note that we estimate $_u$ not $_o$ parameters! Especially we estimate ψ_u not ψ_o which was entered to the simulator or MLE function.

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

$\textit{O}_{ij} \sim \mathcal{N}(\psi_o, \sigma_o)$

We have two parameters, true quality ψ_o and standard deviation for particular PVS and Subject σ_o . *o* stands for continuous model.

After founding the new variable U has certain distribution with different parameters ψ_u and σ_u .

Note that we estimate $_u$ not $_o$ parameters! Especially we estimate ψ_u not ψ_o which was entered to the simulator or MLE function. So we can validate what is the relation between ψ_o and ψ_u .

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

Theory

 $O_{ij} \sim \mathcal{N}(\psi_o, \sigma_o)$

$$P(U_{ij} = k) = \begin{cases} \int_{-\infty}^{1.5} \frac{1}{\sqrt{2\pi\sigma_o}} e^{-\frac{(o-\psi_o)^2}{2\sigma_o}} & k = 1\\ \int_{k-0.5}^{k+0.5} \frac{1}{\sqrt{2\pi\sigma_o}} e^{-\frac{(o-\psi_o)^2}{2\sigma_o}} & k \in \{2,3,4\}\\ \int_{4.5}^{\infty} \frac{1}{\sqrt{2\pi\sigma_o}} e^{-\frac{(o-\psi_o)^2}{2\sigma_o}} & k = 5 \end{cases}$$

Knowing $P(U_{ij} = k)$ we can calculate ψ_u and plot function $\psi_u(\psi_o)$ it should be y = x.

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

inputTQ = np.arange(1.01, 4.99, 0.01)sigma = 0.1

outputTQ = p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5plt.plot(inputTQ, outputTQ)

Small Standard Deviation

Let as assume that $\sigma_o = 0.1$.

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

Large Standard Deviation

Let as assume that $\sigma_o = 1$.

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

Can We Set σ_o to Any Value?

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

Maximum Std

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

Minimum Std

Closer Look $\psi_o \in (1,2)$

Closer Look $\psi_o \in (4,5)$

Closer Look $\psi_o \in (2,3)$

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

Closer Look $\psi_o \in (3, 4)$

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel

Maximum Std for 0-100 Scale

Lucjan Janowski, Krzysztof Rusek, Bogdan Ćmiel