Impacts of internal HMD Playback Processing on Subjective Quality Perception

VQEG meeting March 2019

Frank Hofmeyer, Stephan Fremerey, Thaden Cohrs, Alexander Raake

Audiovisual Technology Group (AVT), Technische Universität Ilmenau (Germany)

04.03.2019

04.03.2019

Scope

- Various factors influencing 360° video QoE
- Studies on subjective & objective quality evaluation for 360° videos
- Some studies on impacts of framerate for traditional 2D videos
- Important: How smooth are motions appearing to the user?
- Hypothesis: Smoothness important for high subjective quality
- Key questions:
 - a) Influence of internal playback processing of HMD on displayed content?
 - b) Use motion interpolation (MI) for improving 360° QoE?
 - c) If yes: which algorithm to use to achieve higher QoE? Content-dependency?

04.03.2019

Experimental Setup & Test Method – Flicker Test (1)

- Key question: Influence internal playback processing on content shown?
- Refresh rate Vive Pro = 90 Hz
- Effect of 30 fps (25/50/60/90 fps) 360° content playout?
- SteamVR installed on fresh VR PC
- Vive Pro considered as blackbox
- \rightarrow Influence of 360° video player
 - GoPro VR player
 - Virtual Desktop
 - Whirligig

04 03 2019

Experimental Setup & Test Method – Flicker Test (2)

- On test tool developed:
 - Flicker test sequences
 - Sensor hardware
- Flicker test sequences: Alternating black/white frames
 - Uneven frames: white
 - Even frames: black
 - 3840x2160 pixels resolution
- Rendered in 25/30/50/60/90 fps, *ffmpeg*, *libx265* encoder (CRF=0)

00.00.00.02	00.00.00.04

00:00:00:01 00:00:02 00:00:03 00:00:04

04.03.2019

Experimental Setup & Test Method – Flicker Test (3)

- Analog frontend: photodiode, transimpedance amplifier + buffer
- Photodiode's spectral range adapted to human eye
- Connected to Oscilloscope + placed above HMD's display
- Black/White frame changes visible on oscilloscope

ѷ木

04.03.2019

Results Flicker Test (1)

- HMD: HTC VIVE Pro
- Player: Whirligig
- Framerate: 90 fps
- ✓ No dropped frames
- \checkmark Very smooth motion
- \checkmark No stuttering
- ✓ No interpolation pattern

Hofmeyer, Fremerey, Cohrs, Raake: Impacts of internal HMD Playback Processing on Subjective Quality Perception

04.03.2019

Results Flicker Test (2)

- HMD: HTC VIVE Pro
- Player: VD
- Framerate: 90 fps
- ✓ No dropped frames
- ✓ No interpolation pattern
- ✓ 25, 30, 50, 90 fps same as Whirligig
- ✓ Less GPU + CPU power than e.g. Whirligig (almost half)

Hofmeyer, Fremerey, Cohrs, Raake: Impacts of internal HMD Playback Processing on Subjective Quality Perception TECHNISCHE UNIVERSITÄT 8

04.03.2019

Results Flicker Test (3)

- HMD: HTC VIVE Pro
- Player: GoPro VR Player
- Framerate: 90 fps
- Dropped frames
- Strong stuttering
- ✤ No regular pattern

Hofmeyer, Fremerey, Cohrs, Raake: Impacts of internal HMD Playback Processing on Subjective Quality Perception TECHNISCHE UNIVERSITÄT 9 ILMENAU

04.03.2019

Results Flicker Test (4)

- HMD: HTC VIVE Pro
- Player: Whirligig
- Framerate: 25 fps
- No dropped frames
- Visible stuttering
- Interpolation pattern recognizable

Hofmeyer, Fremerey, Cohrs, Raake: Impacts of internal HMD Playback Processing on Subjective Quality Perception TECHNISCHE UNIVERSITÄT 10

04.03.2019

Results Flicker Test (5)

Summary

- Recommendations for smooth playout:
 - Use 90 fps 360° content
 - Use Whirligig, Virtual Desktop or another 360° player
 - We avoid usage of GoPro VR Player
 - Avoid playback of 25 fps 360° content

Experimental Setup & Test Method – Subjective Test (1)

- Influence framerate on 360° video quality? \rightarrow Lack HFR 360° content
- MI for improving QoE?
 - Which MI methods for 360° videos?
- Content selection (20 s)
 - ERP (3820x1920 px.), *ffmpeg* 4.1, *libx265* (CRF=0)
 - Training: 1 CGI content (Moon), 30/90 fps
 - Part I: 1 CGI content (Starfield), 25/30/50/60/90 fps
 - Part II: 4 contents, 30 fps source + 90 fps interpolated (various MI algorithms)
- Wide range of complexity/motion \rightarrow Mostly "stuttering-affected" videos

Experimental Setup & Test Method – Subjective Test (2)

CGI contents used

Real contents used

SI/TI values of contents

04.03.2019

Hofmeyer, Fremerey, Cohrs, Raake: Impacts of internal HMD Playback Processing on Subjective Quality Perception TECHNISCHE UNIVERSITÄT 13 ILMENAU

Experimental Setup & Test Method – Subjective Test (3)

- ACR for training + part I \rightarrow overall quality
- PC in part II
- MI algorithms part II:
 - Butterflow (cf. [But19])
 - *ffmpeg* blend frames
 - *ffmpeg* MCI (Motion Compensated Interpolation)
- Subjective test, 12 video expert viewers, randomized playlists

04.03.2019

Experimental Setup & Test Method – Subjective Test (4)

- Test method part II: Show participants 2 consecutive videos
- Ask for preferred video
- Answer "equal" also possible
- Source video: 30 fps
- Interpolated video: 90 fps

HRC number	Video 1	Video 2
HRC001	Source (30 fps)	Butterflow (90 fps)
HRC002	Source (30 fps)	Blend (90 fps)
HRC003	Source (30 fps)	MCI (90 fps)

Results Subjective Test – Training

• "Moon" sequence

04.03.2019

- Quality difference between 30 + 90 fps clearly visible
- Significant in spite of low number of subjects

Results Subjective Test – Part I

- "Starfield" sequence
- Difference in quality for 25/30/50/60/90 fps clearly visible

Results Preference Subjective Test – Part II (1)

HRC001: Source video vs. Butterflow

- Butterflow interpolated video always preferred over source video
- SRC 2: Difference not so clearly visible
 → slow motion
- SRC 3 + 4: Clear preference for interpolated video
- SRC 5: Fast + sudden movements in video
 → MI evoking mosquito artifacts
 → Reference video often preferred

04.03.2019

Hofmeyer, Fremerey, Cohrs, Raake: Impacts of internal HMD Playback Processing on Subjective Quality Perception TECHNISCHE UNIVERSITÄT 18 ILMENAU

Results Preference Subjective Test – Part II (2)

HRC002: Source video vs. Blend

04.03.2019

- MI algorithm "Blend" not good results
- Blending leading to blurred images → reference preferred or pair rated as equal
- Interpolation not leading to significant better quality

Hofmeyer, Fremerey, Cohrs, Raake: Impacts of internal HMD Playback Processing on Subjective Quality Perception TECHNISCHE UNIVERSITÄT 19 ILMENAU

Results Preference Subjective Test – Part II (3)

HRC003: Source video vs. MCI

- SRC 3-5: Clear preference for interpolated video
- SRC 2: Difference not clearly visible, slow camera movements
- SRC 5: Probably MCI is better suitable for fast movements than butterflow → higher number of preferences

04.03.2019

Conclusions

- Different effects of interpolation patterns on playback clearly visible
- General preference of 90 fps over 30 fps content
- Interpolation of 30 fps to 90 fps generally improving quality
- Fast movement: MCI preferred over butterflow
- Medium movement: butterflow slightly preferred over MCI
- ffmpeg "blend" not recommendable
- CGI sequences publicly available

https://github.com/Telecommunication-Telemedia-Assessment/360_testcontent

Questions?

Hofmeyer, Fremerey, Cohrs, Raake: Impacts of internal HMD Playback Processing on Subjective Quality Perception

04.03.2019

References

[But19] https://github.com/dthpham/butterflow

[Hanhart18] P. Hanhart et al. "360-Degree Video Quality Evaluation". In: 2018 Picture Coding Symposium (PCS). IEEE. 2018, pp. 328–332.

[Schatz17] R. Schatz et al. "Towards subjective quality of experience assessment for omnidirectional video streaming". In: Proc. 9th Int. Conf. Qual. Multimedia Exp.(QoMEX). 2017, pp. 1–6.

[Singla17] A. Singla et al. "Measuring and comparing QoE and simulator sickness of omnidirectional videos in different head mounted displays". In: Quality of Multimedia Experience (QoMEX), 2017 Ninth International Conference on. IEEE. 2017, pp. 1–6.

[Tran171] H. T. Tran et al. "A subjective study on QoE of 360 video for VR communication". In: Multimedia Signal Processing (MMSP), 2017 IEEE 19th International Workshop on. IEEE. 2017, pp. 1–6.

[Tran172] H. T. Tran et al. "An evaluation of quality metrics for 360 videos". In: Ubiquitous and Future Networks (ICUFN), 2017 Ninth International Conference on. IEEE. 2017, pp. 7–11.

[Xu17] M. Xu et al. "A subjective visual quality assessment method of panoramic videos". In: 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE. 2017, pp. 517–522.

[Yang18] J. Yang et al. "3D panoramic virtual reality video quality assessment based on 3D convolutional neural networks". In: IEEE Access 6 (2018), pp. 38669–38682.

[Zhang17] B. Zhang et al. "Subjective and objective quality assessment of panoramic videos in virtual reality environments". In: Multimedia & Expo Workshops (ICMEW), 2017 IEEE International Conference on. IEEE. 2017, pp. 163–168.

[Zhang18] Y. Zhang et al. "Subjective Panoramic Video Quality Assessment Database for Coding Applications". In: IEEE Transactions on Broadcasting (2018).

[Zhou16] R. Zhou et al. "Modeling the impact of spatial resolutions on perceptual quality of immersive image/video". In: 3D Imaging (IC3D), 2016 International Conference on. IEEE. 2016, pp. 1–6.

04.03.2019

