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Preference	aggregation	

•  Application:	
	Recommendation	system	
	Social	networks	
	Sports	race,	chess	
	Online	games	

•  Objective:		
	Infer	the	underlying	rating	or	ranking	of	the	test	

candidates	according	to	annotator’s	label.	
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Preference	aggregation	

• Game	players	matching	system	
• e.g.,		MSR’s	TrueSkill	system	

• Friends-making	website	
• e.g.,	Facebook,	Meetup	

• Subjective	image/video	quality	
assessment	

•  Sometimes	discovering	the	rating	(true	score)	
is	more	important	
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Pairwise	comparison	

•  Advantage:	
–  “human	response	to	comparison	questions	is	more	stable	in	the	
sense	that	it	is	not	easily	affected	by	irrelevant	
alternatives”	[Ailon,NIPS2009]	

•  Drawback:	
–  O(n2)	time	complexity	[ITU-R	BT.500]	

•  Solutions:		
–  Optimization	on	parameter	estimation	(deal	with	sparse	data)	
–  Novel	model	

– Pairwise	sampling	
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Outline	

•  The	state	of	the	art	pairwise	sampling	strategy	
•  Proposed	Methodology	
•  Experiment	
•  Results	
•  Conclusion	
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The	state	of	the	art	

•  Random	sampling	
–  Random	Graph	[Xu,	TMM2012]	
–  Subset	Balanced	design[Dykstra,	1960]	

•  Empirical	sampling	
–  Sorting	based	sampling	[Silverstein,	1998]	
–  Adaptive/Optimized	Rectangular	Design	(ARD/ORD)	[Li	
2012][IEEEP3333.1.1][ITU-T	P.915]	

•  Active	sampling	
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Active	sampling	

•  Active	learning	process	
•  Learn	which	pair	could	generate	the	maximum	
information	gain	(EIG)	

•  Bayesian	theory	(prior	and	posterior)	
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Active	sampling	

•  [Pfeiffer,	AAAI	2012]	
– Thurstone	model	+	Bayesian	framework	

•  [Chen,WSDM	2013	]	Crowd-BT	
– Bradley-Terry	model	+	annotator’s	malicious	
behavior	+	Bayesian	framework	

•  [Xu,	AAAI	2018]	Hodge-active	
– HodgeRank	model	+	Bayesian	framework	
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Drawbacks	

•  Sampling	procedure	is	sequential	
•  Focusing	on	ranking	aggregation,	not	accurate	
for	rating	

•  Annotator’s	unreliability	is	not	considered	
•  High	computational	cost	
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The	proposed	method:	Hybrid-MST	
Preliminary	
•  n	objects:	A1,	A2,	…,	An	
•  True	quality:	s	=	(s1,	s2,	…,	sn)	
•  Observed	score:	r	=	(r1,r2,	…,	rn)	

•  Noise	term:	
	

ri = si +εi
εi ~ N (0,σ i

2 )

In	an	observation:		
If	ri	>	rj,			observer	select	Ai	à	yij	=	1	
If	ri	<	rj,			observer	select	Aj	à	yij	=	0	
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Bradley-Terry	model	[Bradley1952]	
The	probability	that	Ai	is	preferred	than	Aj	

π i is	the	merit	of	the	object	Ai	

Thus,	we	obtain:	

Likelihood	function:	 Using	MLE:	
	
	

11	



Active	learning	

•  Gain	information	from	the	observations	

	
•  Utility	function:	
– Fisher	Information		
	
– Kullback-Leibler	Divergence	(KLD)	

Multivariate	Gaussian		
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Active	learning	

•  Gain	information	from	the	observations	

•  A	straightforward	way:	Global	KLD	
	

Multivariate	Gaussian		
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prior	posterior	
Maybe	singular	



Active	learning	

•  Gain	information	from	the	observations	

•  Our	proposal:	Local	Gain	

posterior	

prior	
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With	Gaussian-Hermite	quadrature	

A	tractable	form:	

In	our	model,	n=30	
Reduce	the	computational	complexity!	

Utility	function:	

Note	that	this	n	is	sample	points	in	Gaussian-Hermite	quadrature,	which	is	different	from	the	number	of	test	objects	
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Relationship	between	MLE	estimates	
and	EIG	

The	pairs	which	have	similar	scores	or	the	score	differences	have	
higher	uncertainties	would	generate	more	information	
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Pair	selection	strategy	

•  Global	maximum	(GM)	method	

	
Traditional	method	
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Pair	selection	strategy	

•  Global	maximum	(GM)	method	

	
•  Minimum	Spanning	Tree	(MST)	method	

Test	objects	as	the	vertices	
EIG	as	the	edges	
o  n-1	edges	
o  All	the	vertices	are	connected	
o  Unique	

Traditional	method	
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Determination	of	strategy	

•  When	to	use	GM?	When	to	use	MST?	
•  Monte	Carlo	simulation	

–  Number	of	test	stimuli:	10,	16,	20,	40	
–  True	score	~	Uniform	(1,5)	
–  Noise	~	N(0,	sigma2),	sigma~	Uniform	(0,0.7)	
–  Annotator’s	error:	10%,	20%,	30%,	40%		
–  100	repetitions	

•  Evaluation:		
	PLCC,	Kendall	+	Student’s	t-test	
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Hybrid	strategy	

1	standard	trial	number	=	n(n-1)/2	comparisons	
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The	whole	Hybrid-MST	procedure	

According	to	current	observations:	
1.  Calculating	EIG	for	all	pairs	
2.  If	total	comparison	number	<	1	

standard	number:	
	àselect	pair	using	global	Maximum	
	Otherwise:	
	àselect	pairs	using	MST	

3.	Run	pairwise	comparison	
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Experimental	results	
•  Simulated	data:		
– 60	stimuli	~Uniform[1,5]+N(0,0.72)	
– Observation	error:	10,20,30,40%	

For	better	visualization,	Kendall	and	PLCC	are	rescaled	using	Fisher	transformation	
RMSE	is	rescaled	by	y’=-1/y	 22	



Saving	budget	

For	better	visualization,	Kendall	and	PLCC	are	rescaled	using	Fisher	transformation	
RMSE	is	rescaled	by	y’=-1/y	

Kendall	 PLCC	 RMSE	

Hybrid-MST	 77.11%	 74.89%	 74.89%	

Hodge-active	 84.57%	 68.61%	 71.65%	

Crowd-BT	 78.43%	 -	 -	

23	

To	achieve	the	same	accuracy	with	FPC	of	15	annotators	



Real-world	data	

•  Image	Quality	Assessment	(IQA)	dataset	
[Xu2012TMM]	
•  43266	pairwise	comparison	data,		
•  15	references	from	LIVE2008	and	IVC2005,		
•  16	distortions	
•  328	annotators	from	internet	

•  Video	Quality	Assessment	(VQA)	dataset	
[Xu2011ACMMM]	
•  38400	pairwise	comparison	data	
•  10	references	from	LIVE	database	
•  16	distortions	
•  209	annotators	
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Experimental	results:	IQA	dataset	
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Experimental	results:	VQA	dataset	
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Time	complexity	

FPC,	ARD,	HRRG,	Hodge-active	are	the	fastest	
	
In	learning	based	method:	

	Hodge-active	is	faster	than	Crowd-BT	and	Hybrid-MST	
	Hybrid-MST	in	GM	mode	is	a	little	bit	faster	than	Crowd-BT	
	Hybrid-MST	in	MST	mode	is	n	times	faster	than	Crowd-BT	

	
In	most	cases,	Hybrid-MST	is	in	MST	mode…	
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Considering	crowd	sourcing	

Sequential	sampling	method:	Hodge-active,	Crowd-BT	

To	finish	one	pairwise	comparison	procedure,	T1+T2+T2	seconds	are	required:	
T1:	presentation	time	(e.g.	10	seconds)	
T2:	annotator	voting	time	(e.g.,	5	seconds)	
T3:	sampling	algorithm	runtime	(according	to	the	used	algorithm)	

The	next	pair	can	only	be	determined	when	the	previous	voting	is	finished.	
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Considering	crowd-sourcing	
Batch	sampling	method:	Hybrid-MST	(MST	mode)	

To	finish	n-1	pairwise	comparison	procedure:	T1+T2+T3	seconds	

…	 …	 …	
n-1	
pairs	
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Time	cost	in	real	application	

For	MST:	
q  The	worst	case	à	the	annotators	work	one	after	the	other	
q  The	ideal	case	à	the	annotators	work	at	the	same	time	

The	proposed	Hybrid-MST	is	more		
applicable	in	Crowd	sourcing	
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Conclusion	

•  The	contribution	of	our	work:	
ü local	information	gain	à	faster	computation	
ü Hybrid	sampling	strategy	à	reliable	results	
ü MST	à	robustness	to	observation	errors	
ü Batch	mode	à	applicable	in	crowd	sourcing	
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Conclusion	

•  Using	Hodge-active	[Xu,AAAI2018]	when:		
–  the	test	budget	is	small	(<	2	standard	trial	
numbers,	i.e.,	2n(n-1)/2)	and	the	objective	is	for	
ranking	aggregation	

•  Using	Hybrid-MST	when:	
–  for	rating	aggregation	
– Test	budget	is	large	and	for	ranking	aggregation	
– Small	time	budget	

32	



Beyond	this…	
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Thank	you	so	much!	

Paper	is	accepted	by	NIPS	2018	
Code	is	available	in	github:		
https://github.com/jingnantes/hybrid-mst	
Paper	is	available	in	arXiv:	
http://arxiv.org/pdf/1810.08851	
	
	


