

Considerations on FTV quality assessment

VQEG Mountain View 2018

Carlos Carmona, Pablo Carballeira, Sergio Arnaldo, Javier Escobar, César Díaz, Daniel Berjón, Daniel Corregidor, Carmen Doblado, María del Mar Martín, Francisco Morán, Julián Cabrera, and **Narciso García**

Grupo de Tratamiento de Imágenes (GTI) Universidad Politécnica de Madrid

Presentation scheme

- Introduction to Free View-point Video
- Some current approaches
- Evaluation of an (unknown) system
- Test contents: scenarios, trajectories, and baselines
- Test methodology: paired comparison and absolute category rating
- Results and discussion
- Conclusions (lessons learnt)

What is Free View-point Video?

- Interactive selection of the viewpoint and direction within a range
- Virtual views are generated from the data of physical camera viewpoints

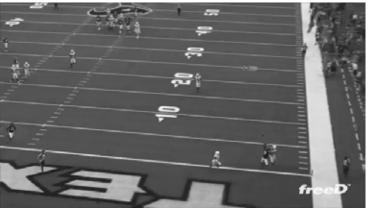
- Scene 3D geometry
 - → Depth data
 - → Depth cameras
- (Very) High computational load

What is Free View-point Video?

Different FVV approaches

- 4DReplay →
 - Professional cameras
 - Non real time
 - Dense camera configuration
 - D Replay

- Intel *freeD* Technology →
 - Professional cameras
 - Non real time
 - Velocity/Perception tricks


(Unknown) System to be analyzed

- (Unknown) System properties:
 - Real time operation
 - Free navigation Real interaction
 - Unpredictability of synthesized trajectories
- Research questions:
 - How the subjective quality of synthesized view trajectories is evaluated? (objective of this talk)
 - How the quality of immersiveness / interaction is evaluated? (not here)
- System evaluation (Synthesis) versus
 Content evaluation (Camera dependent)

Velocity/Perception tricks

VQEG 2018 – Considerations on FTV quality assessment - (#)

(Unknown) System to be analyzed

- Content assessment → Well established procedures
- System evaluation → Many undefined options
 - Camera setting: array/linear, number, baseline(s), ...
 - Camera video quality: optics, frame-rate, spatial resolution, ...
 - Transmission effects (mainly bit-rate limitation)
 - User interaction
 - ...
- Need for the definition of a reproducible testing scheme
 → scenario and procedure

Test contents

- Set of videos (RAW videos) where a virtual camera travels along a dense path of virtual viewpoints generated using the same set of reference cameras
 - → the camera path is the key element for the quality assessment
- Test contents should contain:
 - Different scenarios with different levels of complexity
 - Different trajectories for the virtual camera: swing, step in/out, still (at least)
 - Different baseline distances between reference cameras to study the impact of camera array density on subjective quality:
 - all cameras ½ cameras (double baseline) ¼ cameras (quadruple baseline)

contents = $scenarios \times trajectories \times baselines$

Test contents - Scenarios

Simple Medium Complex

- Few objects in the scene
- Slow/No movement

- More objects in the scene
- Movement
- Occlusions

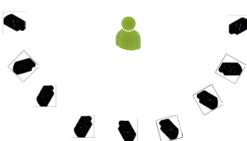
- Scene plenty of objects
- Movement
- Multiple occlusions

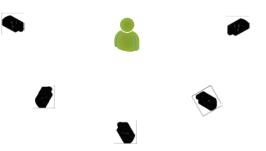
Test contents - Trajectories

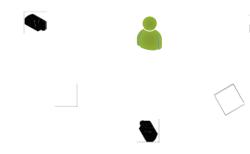
Swing Step In/Out Still

Test content – Baseline increase

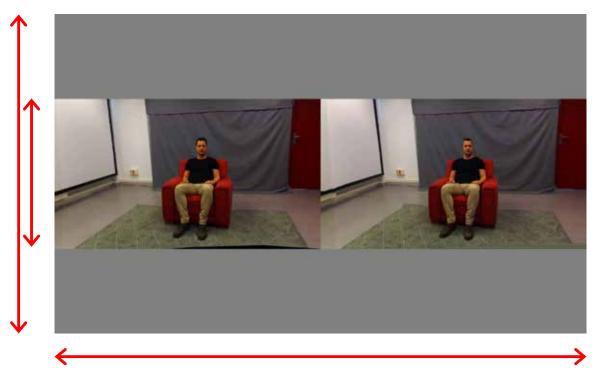
All Cameras


½ Cameras: Double baseline


1/4 Cameras: Quadruple baseline



Test methodology


- Objectives:
 - Comparative analysis of synthesis algorithm with SoA methods
 - Analysis of synthesis quality in an absolute quality range
- Two tests:
 - Paired Comparison versus VSRS (MPEG reference software)
 - Comparison with SoA synthesis algorithms
 - Absolute Category Rating with Hidden Reference
 - Quantitative quality assessment

Test methodology – Paired comparison

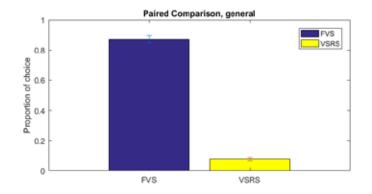
- Compare synthesis algorithm with a reference (MPEG-VSRS)
- Simultaneous comparison

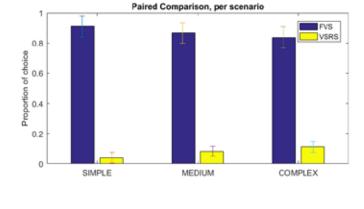


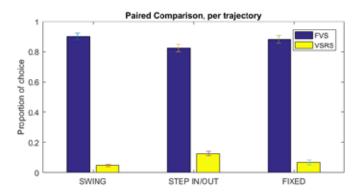
Test methodology – Absolute Category Rating

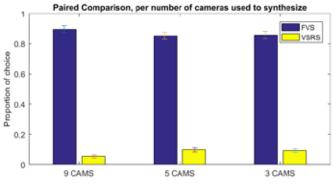
- Analysis of synthesis quality in an absolute quality range
- Show fixed virtual viewpoints:
 - Allows the inclusion of a reference camera as a hidden reference
 - Evaluate quality in different virtual relative positions:
 - Half-way between two closest reference cameras
 - Closer to one of the two reference cameras

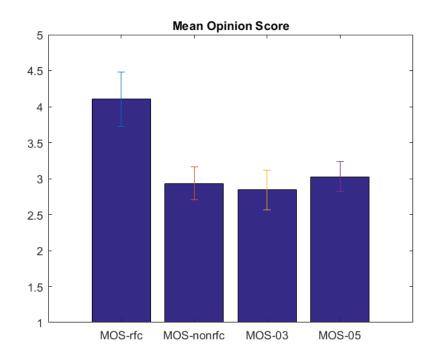
Environment & Equipment

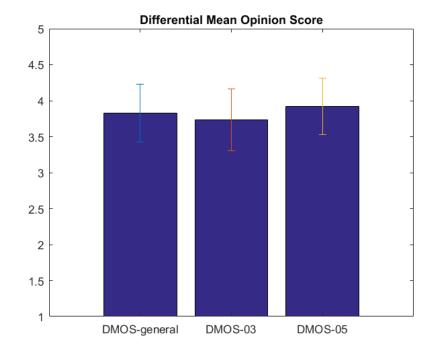



- Ambient lighting conditions controlled to avoid disturbing reflections
- Paired Comparison:
 - Evaluation on a UHD display
 - Distance to visible video: 6H ... attention to figures!
- Absolute Category Rating:
 - Evaluation on different devices: fixed display and mobile device
 - Distance to the fixed display: 3H
 - Distance to the mobile device: comfortable for the user




Results – Paired comparison





Results – Absolute Category Rating

Conclusions (lessons learnt)

- FTV techniques should be evaluated on a pre-specified reproducible camera setting:
 - Comparison with an state of the art reference technique (pair comparison)
 - Evaluation of the synthesis quality (quality range)
- Aspects that should be defined in the analysis, due to their influence in synthesis quality:
 - Camera setting (arrangement and density)
 - Virtual view trajectory
 - Lack of reference for some/all virtual view positions
- Video assessment using a combination of tests included in international standards: ITU-T P.913, ITU-T P.910, ITU-R BT.500
 - Paired Comparison: validation of the new technique
 - Absolute Category Rating with Hidden reference: quantitative quality assessment

Conclusions

- FTV quality assessment requires the identification and normalization of the System Operating Parameters (FTV_SOP) to conduct a meaningful system evaluation
- Assessment of video synthesis quality requires two parallel/simultaneous evaluations

Considerations on FTV quality assessment

Questions – Discussion – Debate - ...

Grupo de Tratamiento de Imágenes (GTI)
Universidad Politécnica de Madrid

This work has been partially supported by the Ministerio de Ciencia, Innovación y Universidades (AEI/FEDER) of the Spanish Government under project TEC2016-75981 (IVME)

