

Video Multimethod Assessment Fusion (VMAF) on 360VR contents

VQEG Mountain View 2018

Marta Orduna^{*}, César Díaz^{*}, Lara Muñoz^{*}, Pablo Pérez⁺, Ignacio Benito⁺, and Narciso García^{*}

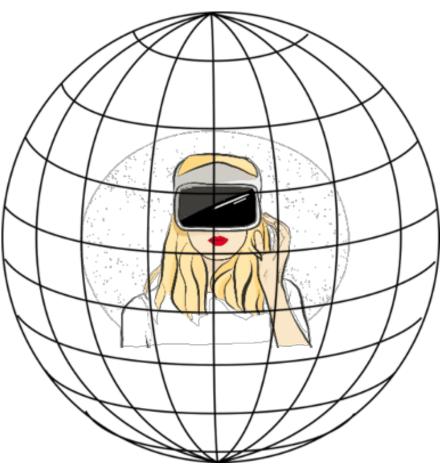
narciso@gti.ssr.upm.es

^{*} Grupo de Tratamiento de Imágenes (GTI) Universidad Politécnica de Madrid ⁺ Nokia Bell Labs Madrid

Presentation scheme

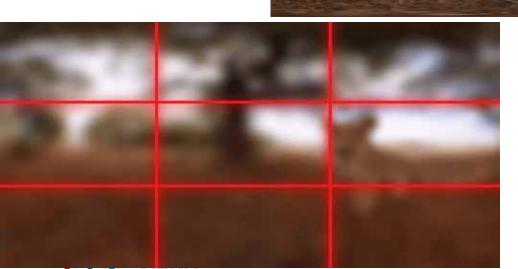
- Introduction
- Review of quality metrics on 360VR contents
- Work approach
- Test material
- VMAF computation
- Subjective assessment
- Results
- Conclusions

Introduction



- Main challenge:
 - to provide omnidirectional content guaranteeing an immersive experience and saving bit rate
- Main solutions:
 - Definition of different perceptible levels of quality
 - Efficient delivery schemes
 - Users' behavior \rightarrow Attention maps
 - Exploitation of peculiarities of the type of projection
- → All these solutions require a quality metric

Introduction – 360VR (omnidirectional) video



Introduction – Video tiling

VQEG 2018 – VMAF on VR360 contents - (#)

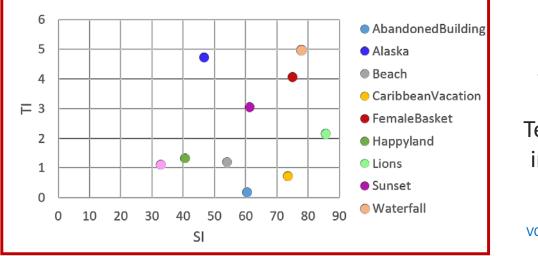
Review of quality metrics on 360VR contents

- Spherical PSNR (S-PSNR)
- Weighted to Spherically PSNR (WS-PSNR)
- Craster Parabolic Projection PSNR (CPP-PSNR)
- Uniformly Sampled Spherical (USS-PSNR)
- Multi-Scale SSIM (MS-SSIM)
- VMAF
- SpatioTemporal VMAF (ST-VMAF)

- VMAF has provided significantly good results on different types of non-immersive contents and viewing conditions
- Research question: can VMAF be applied to omnidirectional content <u>without making</u> <u>any specific adjustments</u>?
- Underlying hypothesis: There is a monotonic relationship between 2D-VMAF and 360VR-VMAF (non-existing)
- If it is true, we can avoid:
 - generating a large and rich specific 360VR video dataset
 - carrying out numerous subjective quality assessments
 - performing the corresponding training and testing stage

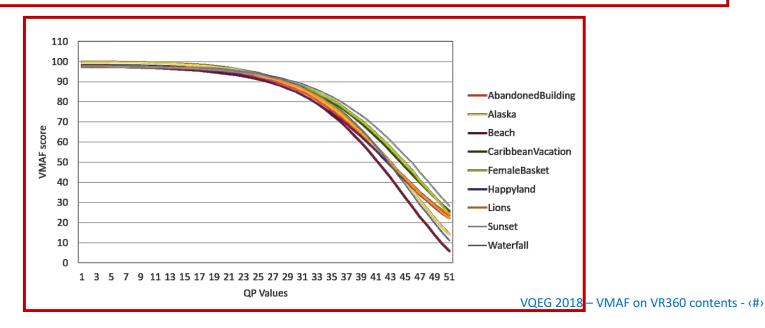
Work approach

- The validation of VMAF on 360VR contents is carried out in two steps:
 - VMAF application to omnidirectional sequences encoded with constant QP in the whole range of possible values to obtain the variation of the score with the encoding parameter
 - VMAF scores validation through a subjective assessment
 VMAF-vs-QP curve is monotonically decreasing by the nature of the encoding
 → adjustment with a finite number of key operating points



Test material

 A wide range of contents selected with different features in terms of color, texture, camera motion, composition, and content in the scenes

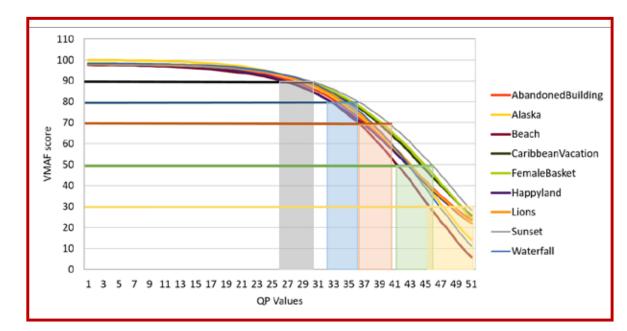

Spatial (SI) and Temporal (TI) information

VMAF computation

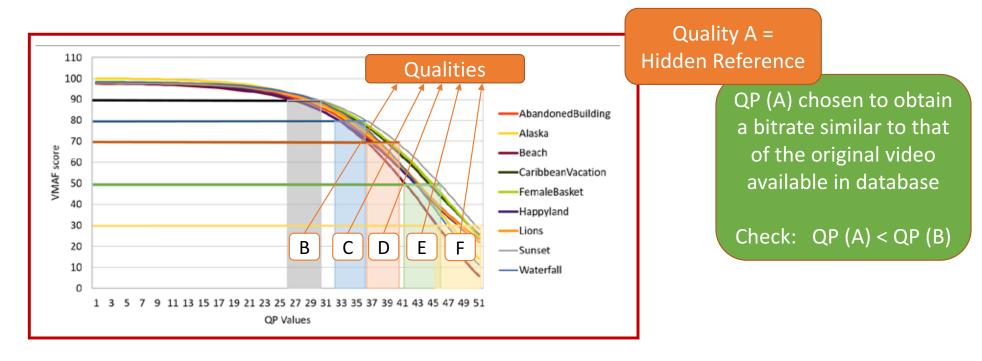
Total number of videos: 459			
Framerate	25 fps		
Hypothetical Reference Circuits (HRCs)	QP range (1-51)		
Resolution	4K (3840x1920)		
Encoding	H.265/HEVC		
Duration	10 seconds		
Number of reference videos	9		

No temporal pooling challenge 4K throughout the process

Quality degradation vs QP



Subjective assessment – Test material


DATASET CHARACTERISTICS				
Number of source videos	9			
Duration	10 seconds			
Encoding	H.265/HEVC			
Resolution	4K (3840x1920)			
Number of QP values	6			

Subjective assessment – Test material

VMAF-vs-QP curve is monotonically decreasing by the nature of the encoding
 → VMAF can be adjusted with a finite number of QPs, which correspond to anchor
 VMAF scores in the curve for all the used contents

Subjective assessment – Test session

ACR-HR				
Five Grade Scale - Quality				
5	Excellent			
4	Good			
3	Fair			
2	Poor			
1	Bad			

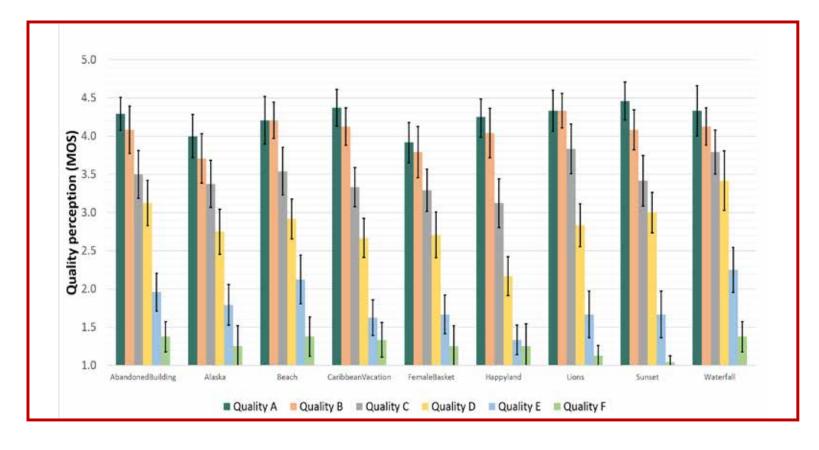
- > No training session (no reference given about max/min quality)
- All videos viewed and scored by each subject
- > Duration around **15 minutes** (assuming 5 seconds for evaluation)
- > 24 observers (age between 21 and 36, average age of 26)
- > All observers with normal or corrected vision
- > No subject removal because of being considered an outlier

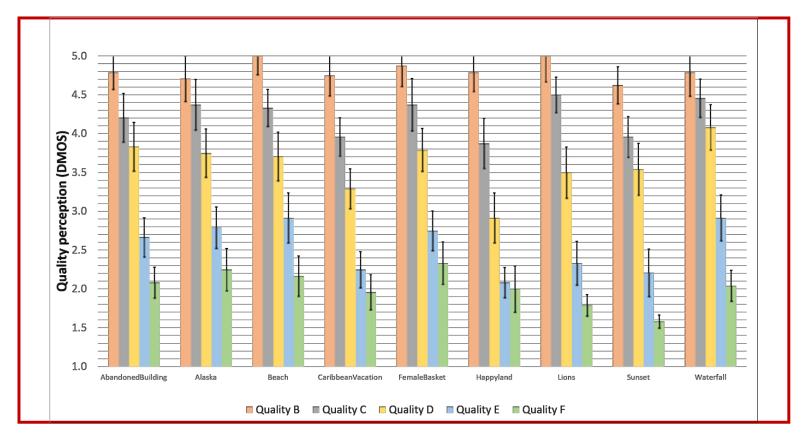
Different randomization for each session

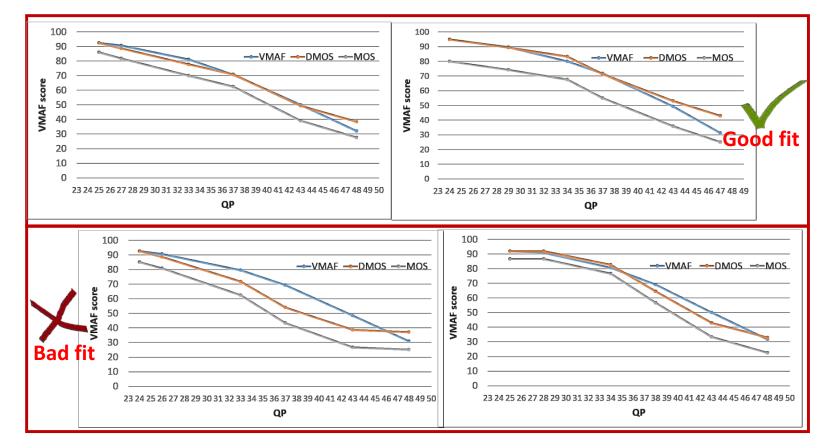
VQEG 2018 - VMAF on VR360 contents - <#>

Grupo de Tratamiento de Imágenes (GTI) Universidad Politécnica de Madrid (UPM) NOKIA

Bell Labs


Equipment & Environment


Experimental results - MOS


Experimental results - DMOS

VMAF adjustment for 360VR contents

PLCC and RMSE between VMAF and DMOS

CONTENT	PEARSON	PEARSON	RMSE	RMSE
	(QB, QC, QD, QE, QF)	(QB, QC, QD, QE)	(QB, QC, QD, QE, QF)	(QB, QC, QD, QE)
AbandonedBuilding	0.995	0.997	3.433	1.983
Alaska	0.992	0.994	5.661	2.488
Beach	0.992	0.991	4.213	2.470
CaribbeanVacation	0.961	0.997	6.982	6.787
FemaleBasket	0.984	1.000	7.097	1.764
Happyland	0.940	0.979	9.338	9.991
Lions	0.987	0.997	4.029	4.446
Sunset	0.996	0.998	5.016	5.490
Waterfall	0.996	0.990	5.511	4.295
AVERAGE	0.983	0.994	5.698	4.413

Conclusions

- Exhaustive study on the feasibility of VMAF on 360VR contents
- VMAF works sufficiently correctly with omnidirectional contents, without performing any particular adjustments
- The creation of a 360VR dataset can be avoided, thus saving computing and time resources

Video Multimethod Assessment Fusion (VMAF) on 360VR contents

Questions – Discussion – Debate - ...

Grupo de Tratamiento de Imágenes (GTI) Universidad Politécnica de Madrid Nokia Bell Labs Madrid

This work has been partially supported by the Ministerio de Ciencia, Innovación y Universidades (AEI/FEDER) of the Spanish Government under project TEC2016-75981 (IVME) and the Spanish Administration agency CDTI under project IDI-20170739 (AAVP)

