Comparison of Different Subjective Test Methods for HEVC Encoded Omnidirectional Videos

A. Singla, S. Fremerey, F. Hofmeyer, W. Robitza, Alexander Raake Audiovisual Technology Group Technical University Ilmenau Germany

Introduction/Motivation

- An important feature of media streaming : Quality adaptation of 360° videos
- Resolution limitation of HMDs: Utilization of network resources efficiently
- What is the optimal bit-rate for watching the 360°video with an HMD?
 - Comparing DSIS, ACR and Modified-ACR scale
- Does simulator sickness change between test sessions?

A. Singla et. al., "Comparison of Subjective Quality Evaluation for HEVC Encoded Omnidirectional Videos at Different Bit-rates for UHD and FHD Resolution", Thematic Workshops of ACM MM, October 2017 2

Video Quality Test Methods

A. Singla et. al., "Comparison of Subjective Quality Evaluation for HEVC Encoded Omnidirectional Videos at Different Bit-rates for UHD and FHD Resolution", Thematic Workshops of ACM MM, October 2017 3

TECHNISCHE UNIVERSITÄT

Video Quality Test Methods

Presentation of One Stimulus in DSIS

5	Imperceptible
4	Perceptible, but not annoying
3	Slightly annoying
2	Annoying
1	Very annoying

DSIS Scale

- 28 Participants - 9 Females - 19 Males
- Avg. age = 24.96

360° Video Test Framework TU Ilmenau

Dataset (8K, 6K, and 4K) – 10s videos

HTC Vive Pro -2880×1600 -110° FOV - Whirligig player

Content 1: Gaslamp

Content 2: harbor

Content 3: KiteFlite

Conten4: SkateboardInLot

Content 5: Trolley

Total Duration (100 minutes)

Pre-screening, Training (10 minutes)	Pause (10 minutes)	Test Session 1 (11 minutes)	Pause (11 minutes)	Test Session 2 (11 minutes)	Pause (11 minutes)	Test Session 3 (11 minutes)	Pause (11 minutes)	Test Session 4 (11 minutes)
--	-----------------------	--------------------------------	-----------------------	--------------------------------	-----------------------	--------------------------------	-----------------------	--------------------------------

Example of One Test Session for DSIS and M-ACR

Total Duration (70 minutes)

Pre-screening,	Pause	Test Session 1	Pause	Test Session 2	Pause	Test Session 3	Pause	Test Session 4
(10 minutes)	(10 minutes)	(7 minutes)	(7 minutes)	(7 minutes)	(7 minutes)	(7 minutes)	(7 minutes)	(7 minutes)

Example of One Test Session for ACR

Experimental results: Video Quality

ACR

M - ACR

TECHNISCHE UNIVERSITÄT

ILMENAU

8

Experimental results: Video Quality

DSIS

TECHNISCHE UNIVERSITÄT

th.

ILMENAU

Experimental results: CI vs MOS

CI : Confidence Interval

TECHNISCHE UNIVERSITÄT ILMENAU

th.

Experimental results: Statistical Reliability*

- MCI: Mean Confidence Interval
- MOS Range: Absolute difference between the highest and lowest MOS for each test method

$$MCI_{norm} = \frac{MCI}{MOS \ Range}$$

Table 1. MCI, MOS Range and MCI_{norm} for ACR, M – ACR and DSIS test methods

	ACR	M – ACR	DSIS
MCI	0.1382	0.1392	0.1405
MOS Range	2.824	3.088	3.16
MCInorm	0.0489	0.0450	0.0444

*Tominaga, et al. "Performance comparisons of subjective quality assessment methods for mobile 11 video", in second IEEE international workshop on Quality of multimedia experience (QoMEX), 2010.

لان TECHNISCHE UNIVERSITÄT ILMENAU

Symptoms of Simulator Sickness

Measurement of Simulator Sickness

- Measurement
 - 16 Questions
 - N (Nausea), O (Oculomotor), and D (Disorientation)
 - Nausea/Headache
 - None, Slightly, Moderate, Severe
 - 4-point scale is used
 - 0,1, 2, and 3
 - Total Score
 - ([N] + [O] + [D]) * 3.74

Experimental results: Simulator Sickness

لابن TECHNISCHE UNIVERSITÄT ILMENAU

14

Experimental results: Simulator Sickness

Experimental results: Simulator Sickness

لان TECHNISCHE UNIVERSITÄT ILMENAU

Conclusion

- Video Quality
 - 6K provides better perceived quality as compared to 4K resolution
 - 25 Mbps (8K) provides almost same perceived quality as 15 Mbps (6K)
 - 6K provides similar perceived quality as compared to 8K resolution
 - DSIS statistically seen more reliable than ACR and M ACR
 - Very high correlation between test methods
 - ACR M-ACR (Pearson Correlation coefficient = 0.95)
 - ACR DSIS (Pearson Correlation coefficient = 0.93)
 - DSIS M-ACR (Pearson Correlation coefficient = 0.97)
- Simulator Sickness
 - Simulator sickness scores increase with time
 - Breaks help in reducing the simulator sickness scores
 - Subjects are least prone to simulator sickness when evaluating 360°videos with DSIS

Are people pixel-peeping 360° videos?

Presented at the special session on QoE for immersive media at HVEI 2019)

Stephan Fremerey*, Rachel Huang**, Alexander Raake* * Audiovisual Technology Group, TU Ilmenau ** Huawei Technologies Co., Ltd.

18

Context & Objective

- Studies using higher-resolution HMDs like HTC Vive Pro currently not available
 → important to investigate influence of increased screen resolution on 360°
 video QoE (→ future HMD devices will be of higher resolution)
- Compare influence of a higher-resolution HMD like HTC Vive Pro (2880x1600 pixel in total) on 360° video QoE to a lower-resolution HMD like HTC Vive (2160x1200 pixel in total)
- Study effect of better integral video quality of the HTC Vive Pro on the discrimination power of subjective ratings
- Evaluate difference in perceived quality for entertainment-type of 360° content in 4K/6K/8K resolution at typical high-quality bitrates → Is 8K resolution really providing a considerably better quality than 4K/6K?
- Get to know, which areas of the video people are focusing on while watching them → Important issue for producers of 360° contents
- Are there differences in head rotation behavior between a) the different HMDs and b) the single quality levels

https://www.vive.com/filer/sharing/ 1529456235/9112/

https://images-na.ssl-imagesamazon.com/images/I/81Q1I3RtZQ L._SX385_.jpg

TECHNISCHE UNIVE

ILMENAU

ILMENAU

- **A. Singla** and S. Fremerey and W. Robitza and A. Raake, "Measuring and comparing QoE and simulator sickness of omnidirectional videos in different head mounted displays", QoMEX, May 2017
- **A. Singla**, A. Raake, W. Robitza, P. List, B. Feiten, "AhG8: Subjective Quality Evaluation for Omnidirectional (360°) Videos", JVET-G0152, 7th Meeting, July 2017
- **A. Singla** and S. Fremerey and W. Robitza and P. Lebreton and A. Raake, "Comparison of Subjective Quality Evaluation for HEVC Encoded Omnidirectional Videos at Different Bit-rates for UHD and FHD Resolution", Thematic Workshops of ACM MM, October 2017
- A. Singla, S. Fremerey, A. Raake, P. List, B. Feiten, "AhG8: Measurement of User Exploration Behavior for Omnidirectional Videos with a Head Mounted Display", JVET-H0050, 8th Meeting, October 2017
- **A. Singla** and W. Robitza and A. Raake, "Comparison of subjective quality evaluation methods for omnidirectional videos with DSIS and Modified ACR", HVEI, January 2018
- S. Fremerey, A. Singla, K. Meseberg, A. Raake, "AVTrack360: An open Dataset and Software recording people's Head Rotations watching 360° Videos on an HMD" ACM Multimedia Systems Conference (MMSys), June 2018 TECHNISCHE UNIVERSITÄT