$\infty \cdot \infty$

Mylène C.Q. Farias, Andrew Hines² and Helard Martinez¹ ¹University of Brasília, Brazil ²University College Dublin, Ireland http://www.ene.unb.br/mylene

VQEG Meeting, Nov-11-2019, California

🖵 Universidade de Brasília

Contents

1 Motivation and Goals

2 Audio-visual Quality Experiment

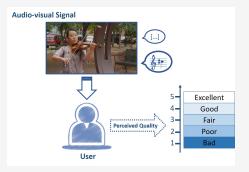
3 Results

4 Conclusions

Influence of cross-modal IP-based degradations on the perceived audio-visual quality | Motivation and Goals

Quality of Experience (QoE) for Multimedia Content

- Most MM content has audio and video!
- Audio and Video degradations.


Subjective Experiments

Main goals of this project:

- Design a NR pixel-based audio-visual quality metric;
- Study effect of both and audio degradations on audio-visual quality;
- Study cross-modal interactions;
- Create a large audio-visual dataset, with a diverse content and cross-modal degradations.

Influence of cross-modal IP-based degradations on the perceived audio-visual quality | Motivation and Goals

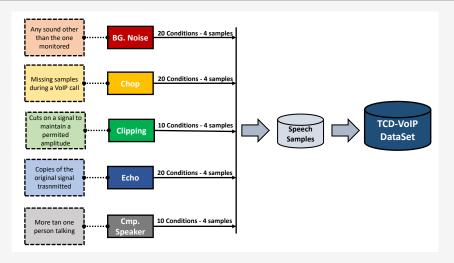
Subjective Experiments

Experiment 1: Audio-visual signals with video degradations;

- Video coding, Packet loss, Frame freezing
- Experiment 2: Audio-visual signals with audio degradations;
 - BG Noise, Chop, Clipping, Echo

Experiment 3: Audio-visual signals with both audio and video degradations.

Contents

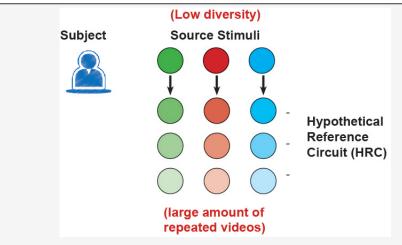

1 Motivation and Goals

2 Audio-visual Quality Experiment

3 Results

4 Conclusions

TCD-VoIP DataSet



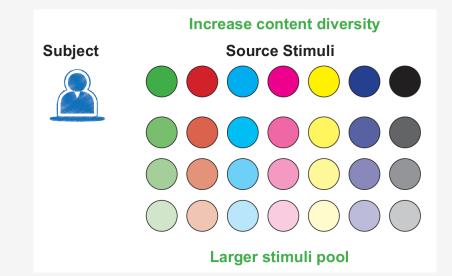
Audio dataset- Andrew Hines, University College Dublin

Only four degradations were used (BG Noise, Chop, Clipping, and Echo).

Influence of cross-modal IP-based degradations on the perceived audio-visual quality | Audio-visual Quality Experiment

Traditional Experimental Methodology

- Artificial Scenario
- Low content Diversity
- Short-length Sequences


Immersive Methodology (IM) - M. Pinson

Goals:

- Increase content diversity;
- Keeping the experiment interesting or/and more realistic;
- Reduce fatigue.
- Longer stimuli (30 60 seconds):
 - Capture participant's attention;
 - Transmit an entire idea.
- Audio-visual stimuli:
 - Rate the global audio-visual quality;
 - Measure both quality and comfort.

Influence of cross-modal IP-based degradations on the perceived audio-visual quality | Audio-visual Quality Experiment

Immersive Methodology (IM)

Influence of cross-modal IP-based degradations on the perceived audio-visual quality | Audio-visual Quality Experiment

Immersive Methodology (IM)

One HRC per source stimuli

Apparatus and Physical Conditions

- Experiment divided into 3 sessions: Display, Training, Main;
- Scores collected (ACR scale, 5 points): *MQS_{HRC}* - Mean Quality Score (HRC)
- Recording Studio @ University of Brasilia
- Desktop computer, LCD monitor, set of earphones, Sound card Asus Xonar DGX 5.1
- Viewing conditions: ITU Rec. BT.500
- Sixty (60) volunteers

Stimuli

Source stimuli:	40 HD sequences
Temporal resolution:	1280x720 (720p)
Spatial resolution:	30 fps
Color space format:	4:2:0
Average Length:	34 seconds
Bit-depth:	16 bits
Sample frequency:	48 kHz
Audio Codec:	PCM

Stimuli

- Video distortions: bitrate compression, Packet-Loss, and Frame-Freezing;
 - H.264 and H.265 video codecs (400 to 16,000 kbs);
 - Packet Loss (0.01 to 0.08)
 - Freezing Pauses (1, 3) and Length (2, 7)
- Four types of audio impairments: BG Noise, Chop, Clipping, Echo;
 - BG Noise (15, 10 dB)
 - Chop (rate 2 or 5 chop/s)
 - Clipping (multiplier by 11 or 25)
 - Echo (100 and 180 ms)

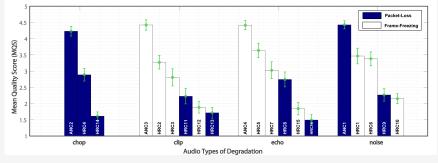
Table: Coding parameters and types of degradations of the video component of each HRC of the dataset.

PacketLoss	Video Codec	Bitrate	PLR
HRC3	H.265	8000	0.01
HRC4	H.265	8000	0.01
HRC7	H.265	8000	0.01
HRC8	H.264	2000	0.05
HRC9	H.264	2000	0.05
HRC11	H.264	2000	0.05
HRC13	H.265	400	0.08
HRC14	H.265	400	0.08
HRC16	H.265	400	0.08
ANC1	-	-	-
ANC2	-	-	-
Frame	Video	Coding	Freezing
Freezing	Codec	Bitrate	Pauses (P), Length (L)
Freezing HRC1	Codec H.264	Bitrate 16000	Pauses (P), Length (L) P = 1, L = 2
HRC1	H.264	16000	P = 1, L = 2
HRC1 HRC2	H.264 H.264	16000 16000	P = 1, L = 2 P = 1, L = 2
HRC1 HRC2 HRC5	H.264 H.264 H.264	16000 16000 16000	P = 1, L = 2
HRC1 HRC2 HRC5 HRC6	H.264 H.264 H.264 H.264	16000 16000 16000 16000	P = 1, L = 2
HRC1 HRC2 HRC5 HRC6 HRC10	H.264 H.264 H.264 H.264 H.264 H.264	16000 16000 16000 16000 800	P = 1, L = 2 $P = 1, L = 2$ $P = 3, L = 7$
HRC1 HRC2 HRC5 HRC6 HRC10 HRC12	H.264 H.264 H.264 H.264 H.264 H.264	16000 16000 16000 16000 800 800	P = 1, L = 2 $P = 1, L = 2$ $P = 3, L = 7$ $P = 3, L = 7$

Table: Coding parameters and types of degradations of the audio component for each HRC of the dataset.

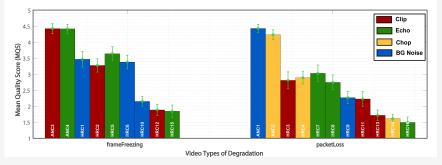
BG Noise	Noise	e SNR (dB)			
HRC1	car	15			
HRC6	office	10			
HRC9	office	10			
HRC10	office	10			
ANC1	-	-			
Chop	Period (s)	Rate (chop/s)	Mode		
HRC4	0.02	2	zeros		
HRC14	0.02	5	zeros		
ANC2	-	-	-		
Clip		Multiplier			
HRC2		11			
HRC3		11			
HRC11		25			
HRC12		25			
HRC13		25			
ANC3		-			
Echo	Alpha (%)	Delay	Feedback		
HRC5	0.3	100	0		
HRC7	0.3	100	0		
HRC8	0.3	100	0		
HRC15	0.3	180	0.8		
HRC16	0.3	180	0.8		
ANC4	-	-	-		

	Audio Component		Video Component					
	Noise	Chop	Clip	Echo	Video Codec	Bitrate (kbps)	PacketLoss	Freezing
Test Condition	Type, SNR (dB)	Period (s), Rate (chop/s), Mode	Multiplier	Alpha (%), Delay (ms), Feedback (%)			PLR	Pauses, Length (s)
HRC1	car, 15	-	-	-	H.264	16000	-	1, 2
HRC2	-	-	11	-	H.264	16000	-	1, 2
HRC3	-	-	11	-	H.265	8000	0.01	-
HRC4	-	0.02, 2, zeros	-	-	H.265	8000	0.01	-
HRC5	-	-	-	0.3, 100, 0	H.264	16000	-	1, 2
HRC6	office, 10	-	-	-	H.264	16000	-	1, 2
HRC7	-	-	-	0.3, 100, 0	H.265	8000	0.01	-
HRC8	-	-	-	0.3, 100, 0	H.264	2000	0.05	-
HRC9	office, 10	-	-	-	H.264	2000	0.05	-
HRC 10	office, 10	-	-	-	H.264	800	-	3, 7
HRC11	-	-	25	-	H.264	2000	0.05	-
HRC12	-	-	25	-	H.264	800	-	3, 7
HRC13	-	-	25	-	H.265	400	0.08	-
HRC14	-	0.02, 5, zeros	-	-	H.265	400	0.08	-
HRC 15	-	-	-	0.3, 180, 0.8	H.264	800	-	3, 7
HRC 16	-	-	-	0.3, 182, 0.8	H.265	400	0.08	-
ANC1	-	-	-	-	-	-	-	-
ANC2		-	-	-	-	-	-	
ANC3	-	-	-	-	-	-	-	-
ANC4		-	-	-	-	-	-	

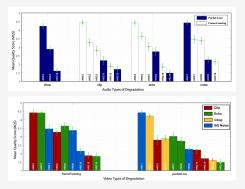

Contents

1 Motivation and Goals

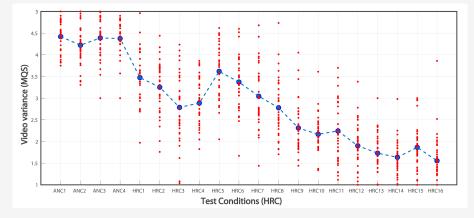
2 Audio-visual Quality Experiment


3 Results

4 Conclusions

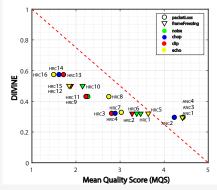


- MQS grouped by audio distortions (chop, clip, echo, and noise);
- For most HRCs, the MQS values hardly reached 3.5;
- Clip generated slightly lower quality scores, while echo HRC16 ($\alpha = 0.3$, delay = 180ms, Feedback = 0.8) received the lowest quality rating;
- Noise and Chop degradations are more sensitive to variation in parameters.



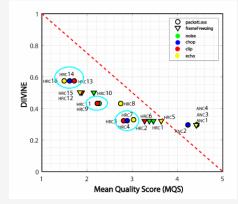
- MQS grouped by video degradations (packet-loss and frame-freezing);
- For most HRCs, the MQS hardly reaches 3.5;
- Clear difference between the MQS for packet-loss and frame-freezing distortions;
- Frame-freezing distortions seemed to have a lower impact on the perceived quality than packet-loss distortions.
- Distortion levels for Frame-freezing seemed to have a heavier impact;

- It seems that audio degradations combined with packet-loss had a stronger impact on the overall audio-visual quality.;
- For the case of audio degradation types, no particular degradation was identified as being determinant in the perceived quality.
- Regarding the video degradation types, it is clear that packet-loss has a stronger influence in the perceived quality.



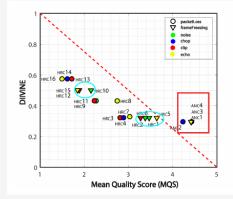
- MQS values and its respective spread of scores.
- More 'degraded' test conditions result in more consistent scores;

Objective Quality Comparison

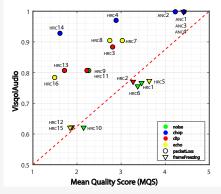

- Subjective scores correspond to the overall audio-visual quality, while the objective scores represent the predicted quality of a particular component (audio or video);
- Subjective scores are distributed on a 5-point scale (ACR), while the scores by the objective metrics are in diferent ranges, normalized to a [0,1] interval;
- The comparison between subjective and objective scores can provide interesting insights.

Objective Quality Comparison - DIIVINE

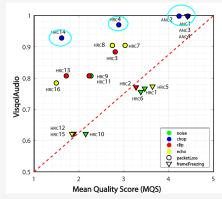
- Subjective scores versus the DIIVINE scores, organized according to the types of degradation;
- Moderate correlation;
- DIIVINE metric tend to overestimates the video quality;
- MQS values occupy most of the rating scale, DIIVINE scores are more concentrated;


Objective Quality Comparison - DIIVINE

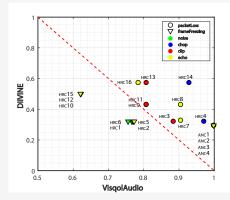
Sequences affected by a packet-loss (HRCs 13, 14, and 16: 400 kbps, PLR = 0.08) resulted in a lower quality, according to DIIVINE;


While sequences by frame-freezing (HRCs 1, 2, 5, and 6: 16,000 kbps P=1, L=2) were less affected;

Objective Quality Comparison - DIIVINE


- Sequences affected by a packet-loss (HRCs 13, 14, and 16: 400 kbps, PLR = 0.08) resulted in a lower quality, according to DIIVINE;
- While sequences by frame-freezing (HRCs 1, 2, 5, and 6: 16,000 kbps P=1, L=2) were less affected;

Objective Quality Comparison - VISQOLAudio


- VISQOLAudio was chosen as the audio quality metric;
- Scatter-plots of subjective audio-visual (MQS) versus VISQOLAudio scores;
- No particular pattern is observed;
- VISQOLAudio seemed to over-estimate the audio-visual quality.

Objective Quality Comparison - VISQOLAudio

- Clear difference between sequences affected by frame-freezing and packet-loss distortions;
- Similar video conditions tended to group around each other but in a lighter way compared to the previous graphs;
- Regarding the audio degradations, Chop resulted in higher quality scores.

Objective Quality Comparison

- VISQOLAudio and DIIVINE predictions were compared;
- Graph shows a disperse negative relationship between both sets of scores.

Contents

1 Motivation and Goals

2 Audio-visual Quality Experiment

3 Results

4 Conclusions

Conclusions

- Performed a subjective experiment, using the immersive methodology, with audio-visual sequences impaired with different audio and video degradations;
- Produced a database of audio-visual stimuli;
- Participants were able to distinguish the different levels of quality:
 - noise and chop degradations had a strong impact on quality;
 - packet-loss test conditions were rated lower than frame-freezing ones;
- subjective results were compared to the objective predictions of VISQOLAudio and DIIVINE scores.

Questions?

mylene@ieee.org,

http://www.ene.unb.br/mylene

http://www.ene.unb.br/mylene/databases.html