QoE test methods for 360° videos

Ashutosh Singla*, Stephan Fremerey*, Werner Robitza**, Alexander Raake* *Audiovisual Technology Group, TU Ilmenau, Germany **Telekom Innovation Laboratories, Deutsche Telekom AG, Germany

TU Ilmenau Campus

VR System End-to-end view

QoE-Relevant Aspects – Examples

- Video: Resolution, Field-of View, motion in different areas, frame rate, color space, etc.
- Audio: Format for recording, representation, playback, device properties, ...
- Audiovisual interaction
- Delivery
 - Bandwidth requirements!
 - Lag
 - specific approaches for delivering 360° video
- QoE and Methodology
 - Scenarios, content
 - Test methods
 - What is being assessed?
 - AV-quality, QoE, Simulator Sickness, Presence, User Behavior
- Recommendations for deployment

What We Have Done So Far?

QoMEX 2017

Singla, A., Fremerey, S., Robitza, W., & Raake, A.: Measuring and Comparing QoE and Simulator Sickness of Omnidirectional Videos in Different Head Mounted Displays.

Research Goals

- Resolution limitation of HMDs: QoE for 4K and FHD?
- Simulator Sickness
 - Content (60s length)
 - Resolution
 - Gender
- Behavioral Analysis
 - Exploration Behavior
- Developed framework for recording head movements
 - Compatible with HTC Vive and Oculus Rift
 - Yaw and pitch values measured every 0.14 s

Test Method

- Assessed subjective quality of 360°videos
 - Absolute Category Rating (ACR) scale
- Each content viewed 4 times (FHD + 4K per HMD)
 - HMD wearing duration = 1m
- On paper MOS and Simulator Sickness Questionnaire (SSQ) scale
- Sit on rotating chair, free exploration of 360° video

28 Participants
- 15 Females
- 13 Males
- Avg. age = 26.25
- Median age = 25
Absolute Category Rating

8

Experimental results: Subjective Quality

Resolution

Contents

- 1 Roller Coaster
- 2 Project 360
- 3 Cockpit View
- 4 Sky Diving
- 5 Etihad A-380
- 6 Elephants

Experimental results: Simulator Sickness

لالت TECHNISCHE UNIVERSITÄT ILMENAU

10

Conclusion

- Quality
 - 4K provides significantly better QoE than FHD
 - Significant impact of content on QoE
 - HTC Vive offers slightly better integral quality compared to Oculus Rift
- Simulator Sickness
 - Low motion videos \rightarrow lowest scores
 - 4K has lower simulator sickness scores as compared to FHD
 - Females more prone to simulator sickness
- Behavioral Analysis
 - Pitch No visible difference between HMDs
 - Yaw Noticeable difference between HMDs

ACMMM 2017

Singla, A., Fremerey, S., Robitza, W., Lebreton, P., & Raake, A. (2017): Comparison of Subjective Quality Evaluation for HEVC Encoded Omnidirectional Videos at Different Bit-rates for UHD and FHD Resolution.

Research Goals

- Resolution limitation of HMD
 - Optimal Network Delivery
 - Provide insights into appropriate coding and resolution settings
- Simulator Sickness
 - In the context of the proposed test design
 - Gender
- Behavioral Analysis

Test Method

- Assessed quality of 360°videos
- Modified Absolute Category Rating (M-ACR) scale
 - Scale is shown on HMD, rating is recorded verbally
 → enables wearing of HMD continuously
- Used six 4K SRCs (by JVET) (10s)
- Videos shown twice (not once as in P.910)
 - More reliable ratings for short sequences (10s)
 - HMD wearing duration = 15m

29 Participants

- 14 Females
- 15 Males
- Avg. age = 25.62
- Median age = 25

Modified Absolute Category Rating

Experimental results: Subjective Quality

TECHNISCHE UNIVERSITÄT

th:

Experimental results: Simulator Sickness

Experimental results: Behavioral Analysis

Conclusion

- Quality
 - 15 Mbps provides almost same perceived quality as 8 Mbps 4K resolution
 - Perceived quality at FHD 1.5 Mbps is slightly higher as compared to UHD at 1 Mbps (expected due to bitrate – quality curves at different resolutions)
- Simulator Sickness
 - No significant increase in the sickness scores over the test sessions
- Behavioral Analysis
 - Contents 1 and 2 have higher value of pitch movements as compared to yaw
 - Subjects explored the video in a different way except in content 2

Salient360! IEEE ICME Grand Challenge 2017: GBVS360 – Rectilinear vs Equirectangular Images

Lebreton, P., Raake, A.

Task & Approach

- Given tasks
 - Model type 1: Head motion based saliency model
 - Ground Truth Heat Map (GTHM) derived from head movement
 - output of model = map in equirectangular space
 - Model type 2: Head + eye-motion based saliency model
 - GTHM derived from head movement plus "movement of eye within viewport"
 - Model type 3: Scan-paths of observers in entire 360 panorama
 - Groundtruth scan-path (GTSP) obtained from head and eye-movement data
- Test dataset: 20 360° images viewed by 48 observers on Oculus-DK2 HMD
- Model: Adaptation of different models
 - → "GBVS360" (basis: Graph-Based Visual Saliency), "BMS360" (basis: Boolean Map Saliency)
 - Specific features
 - Feature representation adaptation
 - Overall framework

Global vs. Local Saliency Maps Computation

- Novelty with regard to context
- What structural changes are needed in existing models?

Adaptive equatorial Prior

ILMENAU

GBVS360 Framework – the right Features

Curves becomes straight line

- Computation of features in the right domain
- Representation in a "global" format

Equirectangular input

23

GBVS360 Framework – the right Features

للہ: TECHNISCHE UNIVERSITÄT ILMENAU

24

8th JVET Meeting China 2017

Singla, A., Fremerey, S., Raake, A., List, P. & Feiten, B. (2017). AhG8: Measurement of User Exploration Behavior for Omnidirectional (360°) Videos with a Head Mounted Display

Research goals

- Exploration behavior of users watching 360° videos
- Similar behavior between subjects regarding yaw and pitch direction?
- Percentage of time spent on different viewports?
- Appropriate viewport to be shown in video tests on classical 2D screens?

Experimental Results: User Behavior

Cumulative Histogram of yaw and pitch interval

Experimental Results: User Behavior

Conclusion

- Subjects explored content quite equally
- Within all contents & quality levels: subjects don't explore entire pitch/yaw ranges
 - For pitch direction: > 80% of time spent between [-10, 30]
 - For yaw direction: > 60% of time spent between [-80, 60]
- Subjects almost don't move their head up-/downwards
 - Almost no exploration in "extreme ranges"
 - For pitch: [-90, -50], [50, 90]
 - For yaw: [-180, -140], [140, 180]
- 45% and 20% of time users are not moving their head in pitch and yaw direction

Questions/Suggestions

