

FROM LARGE-SCALE TO SMALL-SCALE DATABASE

<u>Ahmed Aldahdooh</u>, Enrico Masala, Glenn Van Wallendael, Marcus Barkowsky, and Patrick Le Callet

VQEG meeting, May 2017

OBJECTIVE

Identify significant HRCs for:

- Subjective experiments
- Machine-learning-based VQA

How combine datasets? How to select contents? How to select HRCs? How to evaluate your HRCs subsets?

Introduction to "Improved Performance Measures for Learning-based Video Quality Assessment Algorithms"

LARGE-SCALE DATABASE

Different correlation scores may be obtained when testing an objective video quality (VQ) measurement using two different databases (and cannot really be averaged)

- Lack of content variety in the databases.
- Lack of different HRCs in the experiments.

Go for Large-scale?

- To evaluate objective measurements that is difficult to achieve in subjective assessment due to Limited HRCs.
 - Agreement of objective measures.
 - Not convenient for frame-based analysis? Consistency within a video sequence.
 - The impact of source contents and the encoder parameters are studied.

SMALL-SCALE DATABASE

After Analysis: go for small-scale?

- Identify significant HRCs for:
 - Subjective experiments
 - Machine-learning-based VQA

What we need is to choose HRCs that cover a good variety of targets.

FIRST PART: HRC SELECTION ALGORITHMS

QUALITY/BITRATE-DRIVEN HRCS SUBSET CONTENT-DRIVEN HRCS SUBSET

OBSERVATION

$\mathsf{RESULTS}-1$

RESULTS — 2 - STD. OF THE RANKS MAGNITUDE

SECOND PART: IMPROVED PERFORMANCE MEASURES

After we have these subset, how do they perform?

EXPERIMENTS STEPS

To test the goodness of the elected HRCs subsets.

Not to evaluate the prediction models

11

SHORTCOMING WITH PLCC AND RMSE

0

Measured VQM

0

Measured VQM

Random 1 subset HRC3 Content-based subset HRC1 Random 2 subset HRC4 Quality/bitrate-based subset HRC2 Random 3 subset HRC5 PCC=0.98006, RMSE=0.028603 PCC=0.9728, RMSE=0.035566 PCC=0.9742, RMSE=0.036299 PCC=0.97515, RMSE=0.043059 PCC=0.97745, RMSE=0.036 Content-based subset HRC1 ited VQM VQM ğ Ś Q Fitted for test Fitted model 0.5 ge 0.5 g 0.5 0.5 0.2 0.6 0.8 0.6 0.8 0.6 0.8 0.2 0.4 0.6 0.8 0.6 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.8 0 Ω Measured VQM Measured VQM Measured VQM Measured VQM Measured VQM PCC=0.98121, RMSE=0.037537 PCC=0.9715, RMSE=0.034228 PCC=0.98218, RMSE=0.028684 PCC=0.97866, RMSE=0.033037 Quality/bitrate-bas subset HRC2 PCC=0.98199, RMSE=0.032191 oted VQM VQM Nov Ś Ś 0.5 8 0.5 0.5 g 20.5 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 Measured VQM Measured VQM Measured VQM Measured VQM Measured VQM PCC=0.96494, RMSE=0.039446 PCC=0.97412, RMSE=0.035327 PCC=0.98456, RMSE=0.029213 PCC=0.9842, RMSE=0.039315 PCC=0.98016, RMSE=0.035738 Predicted VQM VQM Trained on ğ ğ Q odicted 0.5 0.5 te 0.5 E e 0.5 ñ 0.8 0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 1 0 Measured VQM Measured VQM Measured VQM Measured VQM Measured VQM PCC=0.95696. RMSE=0.042024 PCC=0.9709. RMSE=0.037648 PCC=0.98048, RMSE=0.032568 PCC=0.99035, RMSE=0.027797 PCC=0.98349, RMSE=0.032657 Random 2 subset HRC4 Predicted VQM VQM ğ ģ Ś 0.5 ted 0.5 e 0.5 e 0.5 0.6 0.8 0.6 0.6 0.8 0.6 0.2 0.4 0.2 0.4 0.8 0.2 0.4 0.2 0.4 0.8 0.2 0.4 0.6 0.8 0 0 Measured VQM Measured VQM Measured VQM Measured VQM Measured VQM PCC=0.96762, RMSE=0.036266 PCC=0.97598, RMSE=0.033203 PCC=0.97693, RMSE=0.034602 PCC=0.98384, RMSE=0.035121 PCC=0.98849, RMSE=0.025857 Random 3 subset HRC5 edicted VQM VQM ğ ğ ğ 0.5 g 0.5 0.5 0 ! 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0

Measured VQM

Evaluation on

RMSE & Correlation cannot tell us exactly which HRC set is better

> AHMED ALDAHDOOH: FROM LARGE-SCALE TO SMALL-SCALE DATABASE 12

Measured VQM

0

Bitstream-based NR VQA

0

Measured VQM

SHORTCOMING WITH PLCC AND RMSE

Another Model RMSE and Correlation can tell us something

AHMED ALDAHDOOH: FROM LARGE-SCALE TO SMALL-SCALE DATABASE 13

(1) RESIDUAL ANALYSIS USING PCA

PCs

PCs

Trained on

Evaluation on Random 1 subset HRC3 Content-based subset HRC1 Quality/bitrate-based subset HRC2 Random 2 subset HRC4 Random 3 subset HRC5 Content-based subset HRC1 $P_{RPCA_V}^{SRC} = 70.9695$ $P^{SRC}_{RPCA_V} = 74.7788$ $P_{RPCA_T}^{SRC} = 55.5425$ $P_{RPCA_V}^{SRC} = 76.7315$ $P_{RPCA_V}^{SRC} = 79.8881$ 100 % 50 Var. Quality/bitrate-based subset HRC2 1 2 3 4 5 6 7 8 9 2 3 4 7 8 1 2 3 4 5 7 8 9 1 2 3 4 5 6 2 3 4 $\begin{array}{c} \mathsf{PCs} \\ P^{SRC}_{RPCA,T} = 48.9377 \end{array}$ $\begin{array}{c} {\sf PCs} \\ P^{SRC}_{RPCA_V} = 61.298 \end{array}$ $\begin{array}{c} \text{PCs} \\ P_{RPCA_V}^{SRC} = 58.1612 \end{array}$ $\begin{array}{c} \mathsf{PCs} \\ P^{SRC}_{RPCA_V} = 65.9828 \end{array}$ PCs $P^{SRC}_{RPCA_V} = 55.0041$ 100 1 2 3 4 5 1 2 3 4 5 1 2 3 4 1 2 3 1 2 3 4 5 $\begin{array}{c} \mathsf{PCs} \\ P^{SRC}_{RPCA_V} = 76.1369 \end{array}$ $\begin{array}{c} \mathsf{PCs} \\ P^{SRC}_{RPCA_V} = 62.5504 \end{array}$ $\begin{array}{c} \text{PCs} \\ P_{RPCA_T}^{SRC} = 53.1866 \end{array}$ $\begin{array}{c} \mathsf{PCs} \\ P^{SRC}_{RPCA_V} = 68.1911 \end{array}$ $\begin{array}{c} \mathsf{PCs} \\ P^{SRC}_{RPCA_V} = 83.1468 \end{array}$ Random 1 subset HRC3 % 50 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 6 $\begin{array}{c} \text{PCs} \\ P^{SRC}_{RPCA_V} = 57.4807 \end{array}$ $\begin{array}{c} \text{PCs} \\ P_{RPCA_V}^{SRC} = 54.884 \end{array}$ PCs PCs PCs $P_{RPCA_V}^{SRC} = 84.8056$ $P^{SRC}_{RPCA_T} = 53.781$ $P_{RPCA_V}^{SRC} = 58.1597$ Random 2 subset HRC4 100 100 % Var. 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 6 7 8 9 1 2 3 4 5 6 $\begin{array}{c} \mathsf{PCs} \\ P^{SRC}_{RPCA_V} = 97.8162 \end{array}$ $\begin{array}{c} \mathsf{PCs} \\ P^{SRC}_{RPCA_V} = 97.9896 \end{array}$ PCs PCs PCs $P_{RPCA-V}^{SRC} = 97.7432$ $P^{SRC}_{RPCA_V} = 94.8281$ $P^{SRC}_{RPCA,T} = 53.8244$ Random 3 subset HRC5 % % 50 50 3 4 5 6 7 8 9 1 2 3 4 5 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 3 4 5 6 6

PCs

How residual structured?

Any sign for systematic redundancy in the residual?

AHMED ALDAHDOOH: FROM LARGE-SCALE TO SMALL-SCALE DATABASE 14

PCs

Pixel-based NR VQA

PCs

(2) CONFIDENCE INTERVALS OF PREDICTED DATA

Pixel-based NR VQA

How much of the predicted data lies within Cl of the trained model?

Remember:

Black lines: CI boundaries of the predicted data of the trained model. Red Lines: CI boundaries of the predicted data of the validation data

AHMED ALDAHDOOH: FROM LARGE-SCALE TO SMALL-SCALE DATABASE 15

(3) CONFIDENCE INTERVALS OF TRAINED MODELS

Is the model stable when validation data is used?

Remember:

Black lines: CI boundaries of the model coefficient of when training data is used. Red Lines: CI boundaries of the model coefficient when validation data is used.

(4) INTERSECTION ANALYSIS

	Case	Icon	Condition	Note			
$G = \frac{i}{\max(b,r)^2}$	1		b = r = i	Typical case for validating on the training data, this is considered the perfect fitting, i.e. all three areas are identical. Refer for example to the main diagonal $X(n,n)$ in Fig. 6. In this case, $G = \frac{1}{\max(b,r)}$. To compare between different models or data, the lower the $\max(b,r)$, i.e. the smaller the larger CI, the better.			
The interaction between black lines and red lines?	2		r = i	The validation data is better predicted than the training data and the CI lie completely within the boundaries of the trained model. This is likely to be a default of			
The higher the overlap the better.				the validation data and thus reduces the goodness as compared to Case 1. In this case, $G = \frac{r}{b^2}$.			
	3		b = i	The validation data is less well predicted than the training data but the validation CI covers completely the training CI. This is considered a case of overfitting of the model and should thus be penalized compared to case 1. In this case, $G = \frac{b}{r^2}$.			

(4) INTERSECTION ANALYSIS (CONT.)

(4) INTERSECTION ANALYSIS (CONT.)

PERFORMANCE MEASURE COMPARISON

Performance measure	Pixel-based NR VQA (Proposed)					Bit-stream-based NR VQA				
	Content	RD	Rand 1	Rand 2	Rand 3	Content	RD	Rand 1	Rand 2	Rand 3
PLCC Cross-dataset	3	1	4	2	5	4	1	3	5	2
PLCC Leave-one-out	2	1	5	3	4	2	4	3	5	1
PLCC Challenging HRCs	2	1	3	4	5	1	2	3	5	4
RMSE Cross-dataset	3	1	4	2	5	5	1	4	3	2
RMSE Leave-one-out	2	1	4	3	5	3	5	4	1	2
RMSE Challenging HRCs	1	2	3	4	5	1	3	5	2	4
$P_{\text{RPCA_T}}^{\text{SRC}}(\frac{n}{m},m), P_{\text{RPCA_V}}^{\text{SRC}}(\frac{n}{m},m)$	3	1	4	2	5	1	2	1	1	3
$P_{\text{DCL}V}(\delta, n) = \frac{i}{\rho}$	3	1	4	2	5	2	1	3	5	4
P ^(b,r,i) _{GModel}	3	1	4	2	5	2	1	3	4	5
P ^(b,r,i) _{GData}	3	1	4	2	5	5	1	2	3	4
Average	2.5	1.1	3.9	2.6	4.9	2.6	2.1	3.10	3.4	3.10

THANKS!

Questions