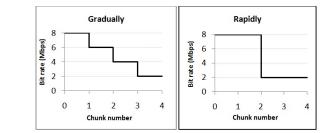
Subjective Analysis and Objective Characterization of Adaptive Bitrate Videos

Jacob Søgaard, Samira Tavakoli, Kjell Brunnström, Narciso Garcia

Motivation: Evaluating HAS QoE

 Increasing number of services based on HTTP Adaptive Streaming (HAS)



High interest on identifing the factors influencing on Quality of Experince (QoE) of HAS

Challenges

Multiple parameters can influence

- Switching frequency
- Switching amplitud
- Content
 - Genre
 - Objective characterization

• Goal: Evaluation (improvment) of whole HAS session

- Analyzing the effect of each parameters
 - Testing certain patterns of quality switching
 - NOT the video quality in each time instant

Challenges

- Adaptation event can last up to several seconds
- Lack of appropriate testing method
 - Mostly for assessment of short sequences (~10 sec)
 - Absolute Category Rating (ACR)
 PVS1
 ~10 sec
 - Recency, hystersis effect and decreasing user attention
 - Single Stimulus Continuous Quality Evaluation (SSCQE)

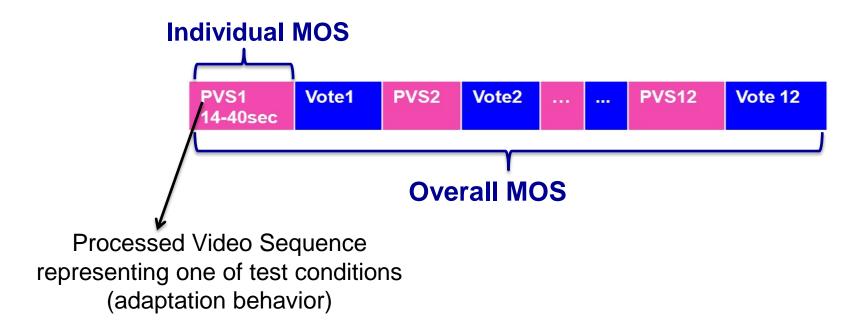
Test Sequence ≤ 5min

PVS2

Continuous vote

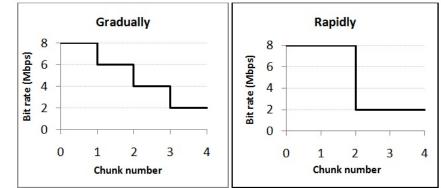
...

- Hard to design experiments on event level
 - Test session should not last longer than 1.5 hrs (Rec. ITU-T P.913)
 - Avoiding user fatigue and boredom

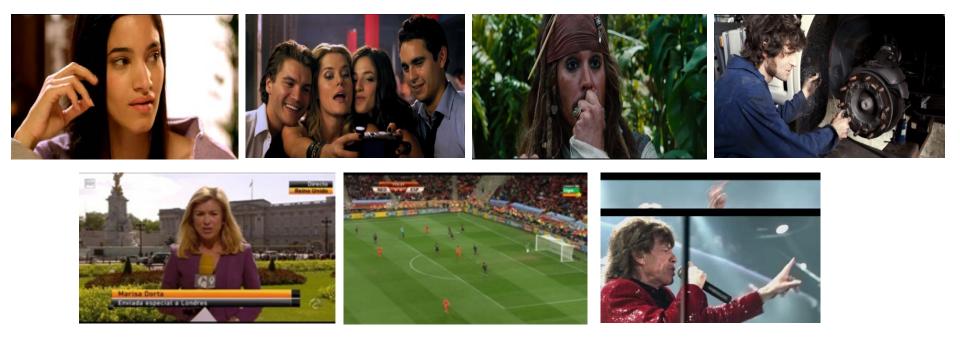

Objectives of this study

- 1. Toward improving **subjective testing methodology** for adaptive streaming
 - Subjective Experiment
- 2. Objective characterization of adapted videos for understanding subjective ratings
 - Objective characterization

Subjective Experiment


Toward improving subjective testing methodology:

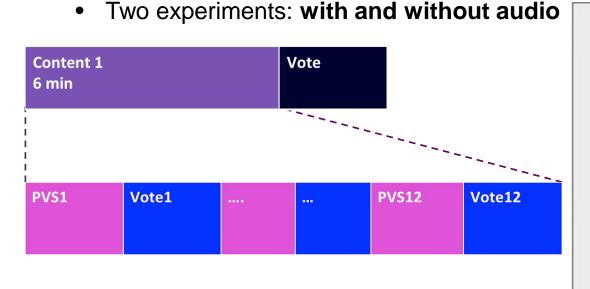
- Impact of evaluation methodology on test subjects evaluation
- Relationship between MOS of individual adaptation events and overall MOS of whole sequence


Adaptation study parameters

- Switching behavior
 - Period (chunk length): 2 sec and 10 sec
 - Amplitude (difference between consequtive quality levels) gradual vs. rapid switching
 - o Decreasing and increasing
- Adaptation dimension
 - o Video quality (QP)
 - o H.264/AVC

- o 4 streams: 5Mbps, 3Mbps, 1Mbps, 600kbps
- o 1280x720/25fps
- MOS based on > 60 test subjects
 - o 132 adaptation events with variable length video

Test video sequences


- 7 commercial content
 - Movie, Documentary, Sport, News, Music
- 6 min; originally 1080p Bluray video, 24/50 fps
- Different spatial and temporal characteristics

Evaluation methodology

Cross-lab experiment (same PVS and rating question in both labs)

(1) **UPM:** Continuous presenation of 6min video including subsequent PVS

Evaluation of <u>individual PVS</u> and <u>overall quality</u> of each video

2 Acreo: Evaluation of overall quality of 6 min video

Content 1	Vote
6 min	

Experimental Setup

- Environment and equipment in both labs
 - Satisfying Rec. ITU-R BT. 500-11
 - 46" Hyundai S465D display
 - Controlled lightning system
 - Viewing distance: 4H
- Observers' number (after screening)
 - UPM-Audio: 21 (6 female & 15 male)
 - UPM-NonAudio: 22 (5 female & 17 male)
 - Acreo: 30 (10 female & 20 male)
- Test presentation
 - One subject per session
 - Training

Objective Characteriation

<u>Aim</u>: Identify the PVS characteristics influential on QoE

Approach:

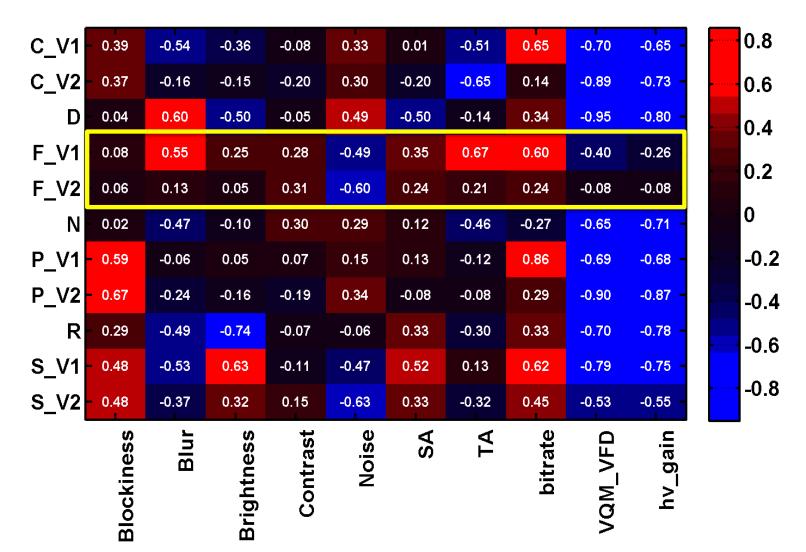
- No-Reference objective characterization tools
 - Blockiness
 - Blur
 - Brightness

- Noise
- Bitrate
- Contrast
- Full-Reference tool
 - Video Quality Model with Variable Frame Delays (VQM-VFD)
- Temporal pooling technique
 - Avrage
 - Av. low 10%

– Av. High 10%

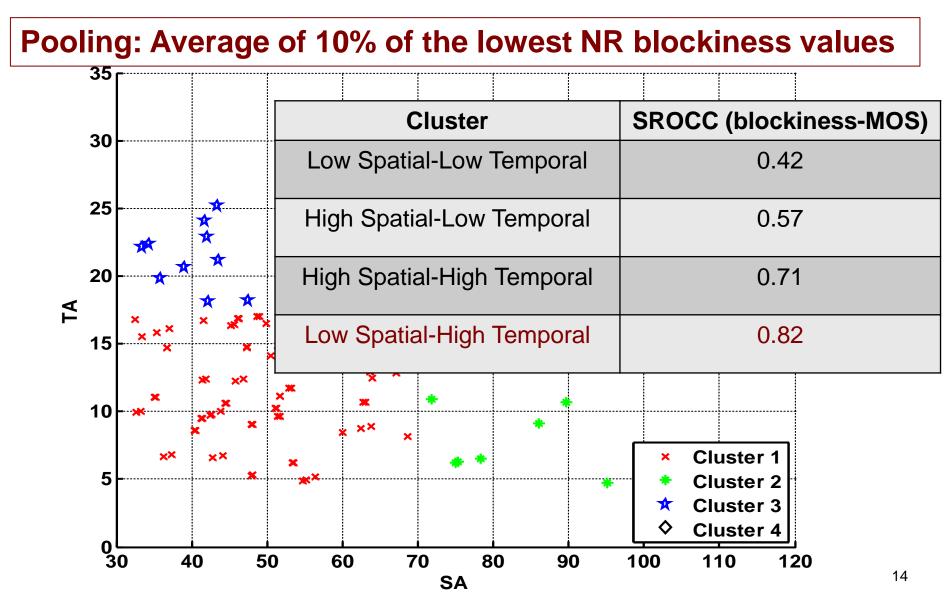
- Av. first 2 sec
 Av. first 2 sec
- Av. first 2 sec
- Av. first & last 2 sec
 - Weighted Average

Spatial Activity
Temporal Activity

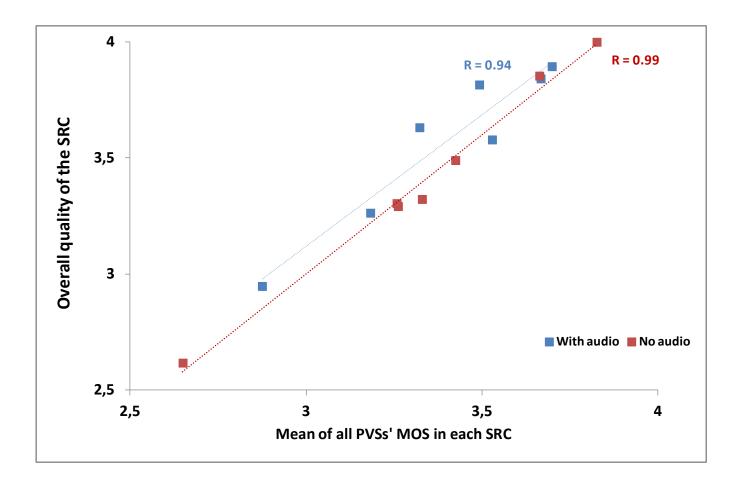

- Standard Deviation
- Minkowski
- Ninassi

SROCC Result: NR measurement and MOS

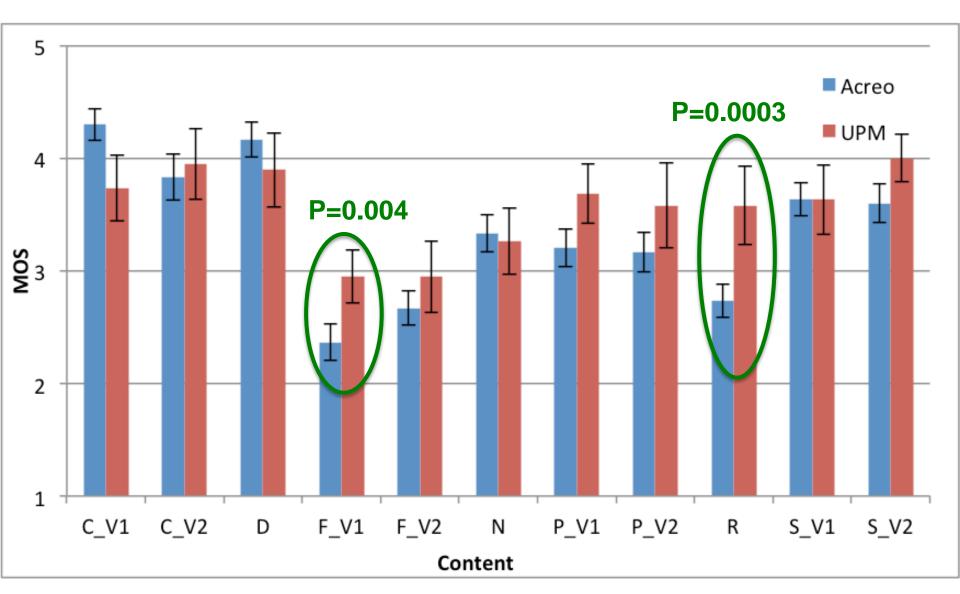
	Blockiness	Blur	Brightness	Contrast	Noise	SA	ΤA	bitrate		-
Weighted Average	0.19	0.05	-0.23	0.31	-0.15	-0.06	-0.29	0.42		-0.4
verage, first & last 2s	0.07	-0.03	-0.22	-0.07	-0.15	0.22	0.04	0.36		-0.3
Standard Deviation	-0.46	-0.00	0.07	-0.08	-0.15	0.01	0.22	-0.14		-0.2
Ninassi	0.15	0.01	-0.21	0.29	-0.15	-0.10	-0.30	0.37		-0.1
Minkowski	-0.04	-0.04	-0.20	0.11	-0.19	-0.10	-0.13	-0.01		0
Average, last 2s	0.24	-0.10	-0.01	0.06	-0.08	0.29	0.07	0.37		
Average, first 2s	0.01	0.13	-0.25	-0.01	-0.10	0.17	0.10	0.17		0.1
Average High 10%	-0.02	0.05	-0.16	0.35	-0.17	-0.02	0.01	0.06		0.2
Average Low 10%	0.46	0.03	-0.19	0.24	-0.18	0.02	-0.09	0.23	-	0.3
Average	0.18	0.07	-0.24	0.32	-0.15	-0.07	-0.30	0.33	.	0.4

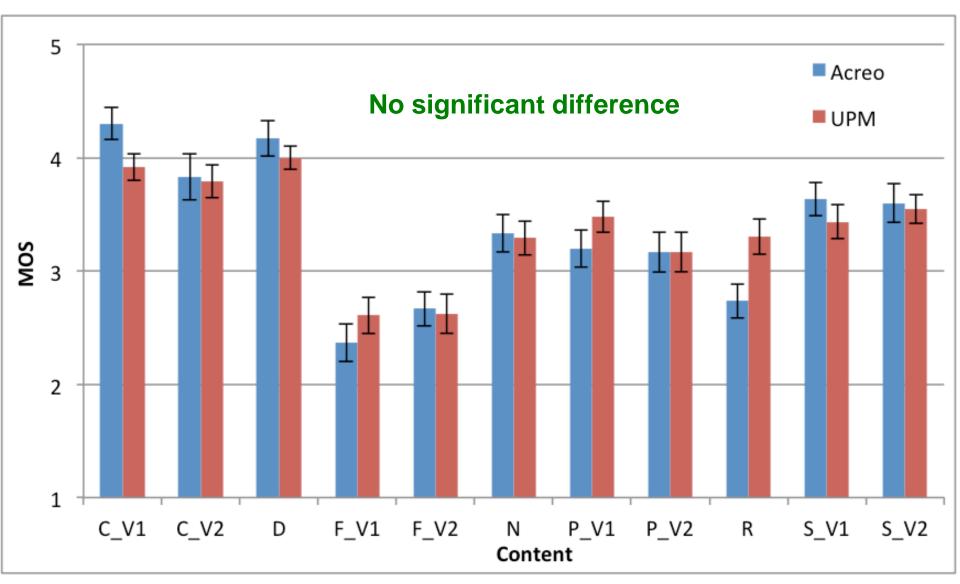

SROCC Result: NR and FR measurement for each content

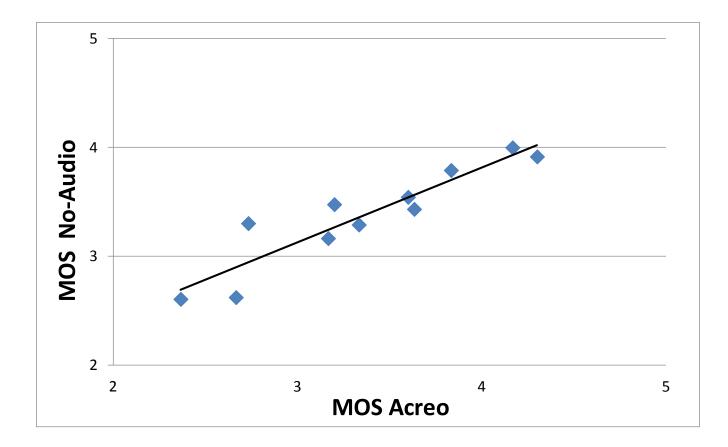
Pooling approach for NR measurement: Average



13


Clustering based on Spatial and Temporal Activity


Earlier Subjective results


Impact of evaluation methodology: Acreo vs. UPM-Audio

Impact of evaluation methodology: Acreo vs. UPM-NoAudio



Estimating overall QoE from individual MOS

Estimating overall QoE from individual MOS?

Pearson Correlation	Overall	Last 5 MOS	Last MOS	Mean of All MOS
Acreo-Audio	0.79	0.66	0.54	0.81
Acreo-NoAudio	0.93	0.70	0.71	0.90

Mean of all MOS

Discussion

On subjective evaluation methodology

- Effect of rating individual events on given overall scores (UPM experiments)
- Influence of language and culture
 - Big difference in Spanish language videos (Acreo vs. UPM)
 - High similarity of Acreo and No-Audio
 - More focus on visual quality
- Mean MOS of individual event: a good correlation with overall quality
 - Higher correlation in Audio-NoAudio

Discussion

On objective characterization of adaptive streaming videos

- A selection of tools can be used
- Depends on the content the performance of the tools can be different
 - Football content due to the characteristics of the original video

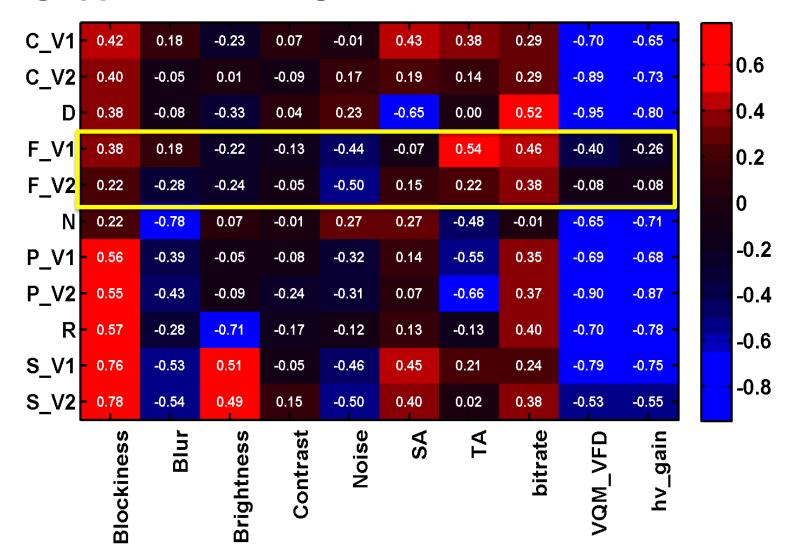
- Mean of the MOS of individual events: a good predictor of the overall MOS for the full length 6 minute video
- Low performance of objective characterization (tools) in our dataset
- Clustering videos based on Spatial and Temporal characteristics: increasing the performance
- Best predictor: Full-Reference blockiness

Future works

- Repeating experiment with different content (English language)
- Incorporating other characteristics on perceived quality
 - e.g. scene changes

Thank you

- UPM's work was partally funded by Minsterio de Economía y Competitividad of the Spanish Goverment.
- Acreo's work was funded by Vinnova (Sweden's innovation agency) and EIT ICT Labs, which is hereby gratefully acknowledged.



Adaptation scenarios

Status	Possible Client	Code			
	Gradually	2 sec chunk	IGR2		
Increasing quality	(600-1-3-5)	10 sec chunk	IGR10		
	Rapidly	2 sec chunk	IRP2		
	(600-5)	10 sec chunk	IRP10		
Decreasing quality	Gradually	2 sec chunk	DGR2		
	(5-3-1-600)	10 sec chunk	DGR10		
	Rapidly	2 sec chunk	DRP2		
	(5-600)	10 sec chunk	DRP10		
	No degradation- The whole segment at 5Mbps				
Constant quality	No degradation- The whole	N3			
	No degradation- The whole	N1			
	No degradation- The whole	N600			

SROCC Results between NR and FR measurements for each content

Pooling approach: Average of 10% of the lowest values

25