

IEEE CPIQ Standard Updates

Elaine Jin and Philip Corriveau Intel Corporation September 14, 2015

1 INTEL CONFIDENTIAL, FOR INTERNAL USE ONLY

CPIQ Standard Timeline

IEEE P1858 CPIQ Standard is currently under ballot review, with a planned release in 2016.

CPIQ Membership

- The IEEE CPIQ members include:
 - telecom carriers
 - operating-system vendors
 - chipset vendors
 - network equipment vendors
 - mobile device vendors
 - test laboratories

- Apkudo LLC
- AT&T
- China Academy for Telecommunications Research (China)
- Cisco Systems, Inc.
- DxO Labs (France)
- Huawei Device Company (China)
- Image Engineering Co. GmbH KG (Germany)
- Imatest LLC
- Intel Corporation
- LG Electronics (Korea)
- Microsoft
- NVidia Corporation
- T-Mobile US

All others are USA members

IEEE P1858 - Standard for Camera Phone Image Quality (CPIQ)

https://standards.ieee.org/develop/project/1858.html

- IEEE P1858 Standard for Camera Phone Image Quality (CPIQ) specifies methods and metrics for measuring and testing camera phone image quality to ensure consistency of image quality. It defines a standardized suite of objective and subjective test methods for measuring camera phone image quality attributes, and it specifies tools and test methods to facilitate standards-based communication and comparison among carriers, handset manufacturers, and component vendors regarding camera phone image quality.
- The IEEE CPIQ Conformity Assessment Steering Committee is being formed to create an industry supported consumer rating system based on the forthcoming IEEE P1858 standard, which is intended to address the fundamental characteristics that contribute to image quality.

CPIQ Consumer Rating System

Level One: Single rating that is weighted or linear combination of ratings one level below

Camera Rating = f(Outdoor, Indoor, Lowlight)

Level Two: Three ratings for three use-cases: Outdoor, Indoor, Low-Light (defined by light level, e.g. 1000 lux, 100 lux, 10 lux)

Multivariate formulism Level Three: Radar plot with key metrics

Color

case

Level 3 -> Level 2 Conversion

- Multivariate formulism (Keelan, 2002) can be used to predict overall quality from individual attributes
- Minkowski metric is used to calculate the overall quality metric from individual metrics $\sqrt{1/n_m}$

$$\Delta Q_m = -\left(\sum_i \left(-\Delta Q_i\right)^{n_m}\right)^{1/n_m}$$

• The Minkowski power is calculated as:

$$n_m = 1 + 2 \cdot \tanh\left(\frac{(-\Delta Q)_{\max}}{16.9}\right)$$

Calculated 50% JNDs of Quality

Multivariate formulism was established based on four Kodak studies shown here.

CPIQ Metrics Consider Human Visual System & Viewing Conditions

7

INTEL CONFIDENTIAL

CPIQ Metrics are Linked to Subjective Image Evaluations

<u>Objective</u> <u>Metric</u> – JND loss

CPIQ Metrics

CPIQ Metrics	Symbols	Artifactual/ Preferential
Spatial frequency response	SFR	Artifactual
Lateral chromatic displacement*	LCD	Artifactual
Chroma level		Preferential
Color uniformity		Artifactual
Local geometric distortion*	LGD	Artifactual
Visual noise		Artifactual
Texture blur		Artifactual

Spatial Frequency Response (SFR)

Acutance

 $Q = \frac{\int_0^{\nu_c} \text{SFR}(\nu) M(\nu) \text{CSF}(\nu) d\nu}{16.88}$

SFR metric

10

 $B = 0.8859 - Q \qquad Q \le 0.8859$ $B = 0 \qquad Q > 0.8859$

_{max} – JND

Quality loss $= \frac{3.360 \times 10^{-3} - 2.336B + 164.1B^2 - 191.8B^3 + 16.32B^4}{1.000 - 0.08655B + 0.9680B^2 - 2.306B^3}$

This formula was derived from ISO 20462 Part 3 equations, not from CPIQ subjective studies.

SFR Chart

- ROI: 32x32 pixels
- Low contrast edges
- Automation landmarks
- Framing marks

Lateral Chromatic Displacement (LCD)

Dot Chart

boat_people_LCA_pix00.bmp 1253x834

Field_LCA_pix00.bmp 1088x816

GeorgeEastmanHouse_LCA_pix00.bmp 1088x816

Wedding_LCA_pix00.bmp 8

Quality Loss Function

LCD Metric

11 INTEL CONFIDENTIAL

Chroma Level

$$C_M = \frac{1}{N} \sum_{i=1}^N \sqrt{a_{Mi}^2 + b_{Mi}^2}$$

Chroma

$$C_{R} = \frac{1}{N} \sum_{i=1}^{N} \sqrt{a_{Ri}^{2} + b_{Ri}^{2}}$$

Quality Loss Function

$$QL = k * \left(1 - e^{-\left(\left(a * |CL_{sg} - p\right)^{r}\right)}\right)$$

Constant	CLsg <= 102.4	CLsg > 102.4
р	102.4	102.4
a	0.0064	0.0402
r	1.357	1.978
k	38.282	6.216

Chroma Level Metric

$$CL_{sg} = \frac{C_M}{C_R} * 100\%$$

Digital ColorChecker SG

This is the newest addition to the CPIQ set of metrics.

Color Uniformity

Color Uniformity Metric

$$D_c = \max_i D_c(i)$$
 $D_c(i) = \sqrt{(a(i) - \bar{a})^2 + (b(i) - \bar{b})^2}$

Quality Loss Function

White Board / Diffuser

(intel)

Local Geometric Distortion (LGD)

LGD Metric OM = 100.0 * (H' - H) / H

Quality Loss Function

Dot Chart

Undistorted Grid

Pincushion Distortion

MemorialArtGallery_dxo_1MP

grass_people_retouch_8bit_fullres_corrLGDLCA_crop

GeorgeEastmanHouse_dxo_1MP

restaurant_retouch_8bit_fullres_confLGDLCA_1MP

Visual Noise

VN objective metric is measured on $L^* = 50$ neutral patch

(intel)

Texture Blur

$$MTF = \left(\frac{PSD(image) - PSD(noise)}{PSD(target)}\right)^{1/2}$$

Texture Blur Metric

Texture Acutance =
$$\frac{\int_{0}^{v_{e}} MTF_{L}(v) \cdot M(v) \cdot CSF_{L}(v)dv}{16.88}$$

Quality Loss Function

JND = $(21.5 \times \text{Texture Acutance}) + 11.7$ Texture Acutance $\leq (32)$ 0.95

JND = 32.1

Texture Acutance > 0.95

Dead Leaves Target

Intel Architecture Group

(intel)

Example CPIQ Test Results (10 lux)

CPIQ Metrics	Devid	e1 (JND)	Device2 (JND)			
Edge Sharpness		12.20	1.37		Edge Sharpness	
Visual Noise		3.97	0.33	Lateral Chro	14.00 12.00 10.00	
Texture Detail		14.00	9.60	Aberrati	on 8.00 Visua 6.00	al Noise
Color Saturation		0.73	1.74		4.00 2.00	
Color Uniformity		0.80	1.40	Lens Geometi Distortion	ric 0.00	Fexture Detail
Local Geometric Distortion		0.10	0.10			
Lateral Chromatic Displaceme	nt	0.00	0.00	Col	or Uniformity Color Satura	ation
Overall quality loss	5 1	17.86	9.93			
Standard Quality Scale (JNE) 32	24	16	8	0	
Quality Loss Scale (JND)			16	24		
	U	0	10	24	52	
Quality Category Scale	Excellent	Very Good	Good Fair	Poor	Not Worth Keeping	

S

CPIQ and ISO Alignment

CPIQ Metric	ISO Counterpart	Status
Spatial frequency response		
Lateral chromatic displacement	ISO 19084 – Chromatic displacement	Submitted for publication
Chroma level		
Color uniformity	ISO 17957:2015 - Shading measurements	Published
Local geometric distortion	ISO 17850 – Geometric distortion measurements	Submitted for publication
Visual noise	ISO 15739 – Noise measurements Annex B Visual noise	Ad hoc group, work in progress
Texture blur		

CPIQ Metrics Under Development

- Color and tone
 - AWB metric: aim and quality falloff, Phase one results will be reported in Oct 2015
 - AE metric: two proposals will be discussed in Oct 2015
- Visual noise
 - Develop metrics to measure visual noise including chroma noise and effect of noise reduction
- Video quality
 - Dynamic image (with motion blur): SNR and Spatial Resolution
 - Video Stabilization
 - Image Lag
 - Convergence rate for 3A algorithm
 - Frame rate consistency/jitter

