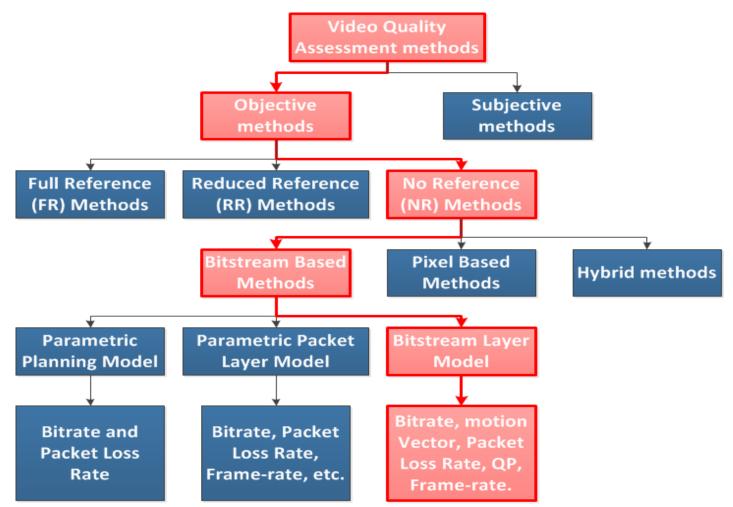
ON BITSTREAM FEATURES BASED PERCEPTUAL QUALITY ESTIMATION OF HEVC CODED VIDEOS

PRESENTER:


Muhammad Shahid (Blekinge Institute of Technology, Sweden)

Collaborators:

Marcus Barkowsky and Glen Van Wallendael (JEG-VQEG)

Video Quality Assessment*

*Shahid et al., No-reference image and video quality assessment: a classification and review of recent approaches, in *EURASIP Journal on Image and Video Processing*, **2014**:40

Project Outline

1. Deliberations on potential bitstream based features.

2. Extraction of the features from HEVC coded videos.

3. Designing ANN model for quality estimation.

4. Analysis of the results.

SRCs

src01	src02	src03	src04	src05	
- animation - zooming camera	- basketball match - still camera	- basketball training - moving camera	- walking animal - motion tracking camera	- lying animal - three zoom camera position	
src06	src07	src08	src09	src10	
- scene of toys - rotating camera	- still camera		 4 different scenes of animals in a zoo, separate videos still camera 	-scene of an escalator at the subway station - amateur video (shaking camera)	

Test Stimuli

- Encoded using HEVC (HM11.1), producing 59520 test videos
- 560 considered for this pilot investigation

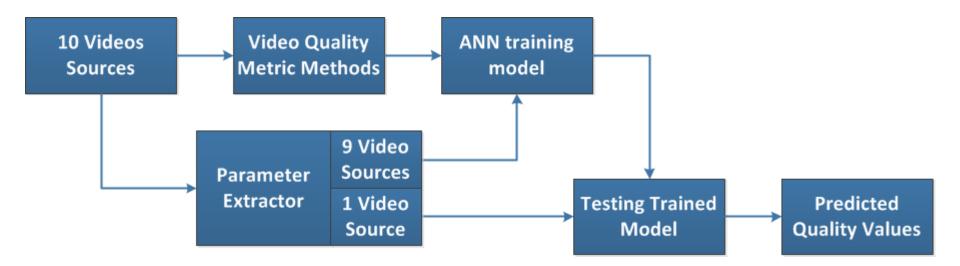
Bitrate	500kbps, 1Mbps, 2Mbps, 4Mbps, 8Mbps, 16Mbps				
Rate control	Picture adaptive, CU adaptive				
QP	26, 32, 38, 46				
GOP	1, 2, 4, 8				
Intra period	8, 16, 32, 64				
Random access	IDR (closed-GOP intra), CDR (open-GOP intra)				
Resolution	1920x1080, 1280x720, 960x544				
Slices	0, 2, 4, 1500byte				

Objective Metrics

- 1. PVQM Perceptual Video Quality Metric
- 2. VQM Video Quality Metric
- 3. SSIM Single Scale Structural Similarity
- 4. PSNR Peak Signal to Noise Ratio
- 5. VIFP Visual Information Fidelity in Pixel Domain

Number	Feature	Remarks				
1	number_of_Cus	The number of CUs a slice is divided into				
2	INTRA[%]	Percentage of blocks coded as INTRA in a slice				
3	2Nx2N_I[%]	Percentage of INTRA coded with partition 2Nx2N in a slice				
4	NxN_I[%]	Percentage of INTRA coded with partition NxN in a slice				
5	INTER_P[%]	Percentage of blocks coded as INTER P prediction in a slice				
6	INTER_B[%]	Percentage of blocks coded as INTER B prediction in a slice				
7	2Nx2N_P[%]	Percentage of INTER coded with partition 2Nx2N in a slice				
8	2NxN_P[%]	Percentage of INTER coded with partition 2NxN in a slice				
9	Nx2N_P[%]	Percentage of INTER coded with partition Nx2N in a slice				
10	NxN_P[%]	Percentage of INTER coded with partition NxN in a slice				
11	2NxnU_P[%]	Percentage of INTER coded with partition 2NxnU in a slice				
12	2NxnD_P[%]	Percentage of INTER coded with partition 2NxnD in a slice				
13	nLx2N_P[%]	Percentage of INTER coded with partition nLx2N in a slice				
14	nRx2N_P[%]	Percentage of INTER coded with partition nRx2N in a slice				
15	2Nx2N_B[%]	Percentage of INTER (B) coded with partition 2Nx2N in a slice				
16	2NxN_B[%]	Percentage of INTER (B) coded with partition 2NxN in a slice				
17	Nx2N_B[%]	Percentage of INTER (B) coded with partition Nx2N in a slice				
18	NxN_B[%]	Percentage of INTER (B) coded with partition NxN in a slice				
19	2NxnU_B[%]	Percentage of INTER (B) coded with partition 2NxnU in a slice				
20	2NxnD_B[%]	Percentage of INTER (B) coded with partition 2NxnD in a slice				
21	nLx2N_B[%]	Percentage of INTER (B) coded with partition nLx2N in a slice				
22	nRx2N_B[%]	Percentage of INTER (B) coded with partition nRx2N in a slice				
23	SKIP[%]	Percentage of blocks coded as SKIP in a slice				

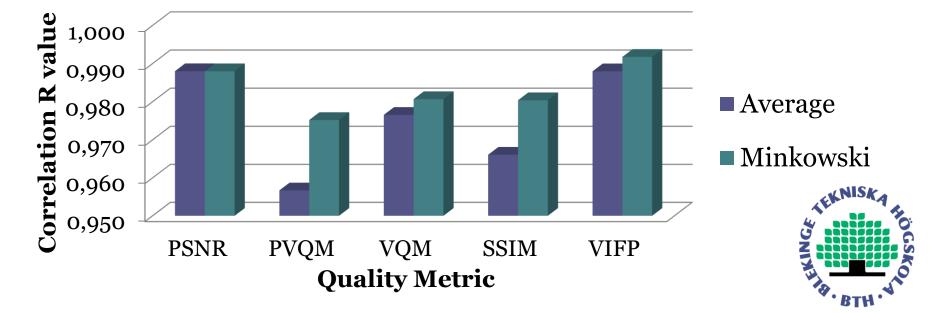
24	AvgMVx	Average value of MV in direction x in a slice
25	AvgMVy	Average value of MV in direction y in a slice
26	stdDevMVx	Standacrd Deviation of MVx in a slice
27	stdDevMVy	Standacrd Deviation of Mvy in a slice
28	VarMVx	Variance of MVx in a slice
29	VarMVY	Variance of MVy in a slice
30	AvgQP	Average value of QP in a slice
31	DevQP	Standacrd Deviation of QP in a slice
32	VarQP	Variance of QP in a slice
33	max_CU_size (8x8-64x64)	The maximum size of CU used in a slice (if the encoder evaluates only 16x16, probably a bad compression job is done)
34	min_CU_size (8x8-64x64)	The minimum CU size used in a slice
35	is_bipredictive	A binary value if a bipredictive coding is used or not in a slice
36	AvgQP_i	Average value of QP in an INTRA slice
37	DevQP_i	Standacrd Deviation of QP in an INTRA slice
38	VarQP_i	Variance of QP in an INTRA slice
39	AvgQP_p	Average value of QP in an inter (P or B) slice
40	DevQP_p	Standard Deviation of QP in an inter (P or B) slice
41	VarQP_p	Variance of QP in an inter (P or B) slice
42	AvgMVx_small_cu	Average value of MV in direction x in a slice for CUs of size equal or less than 16x16
43	AvgMVy_small_cu	Average value of MV in direction y in a slice for CUs of size equal or less than 16x16
44	stdDevMVx_small_cu	Standard Deviation of MVx in a slice for CUs of size equal or less than 16x16
45	stdDevMVy_small_cu	Standard Deviation of Mvy in a slice for CUs of size equal or less than 16x16
46	VarMVx_small_cu	Variance of MVx in a slice for CUs of size equal or less than 16x16
47	VarMVY_small_cu	Variance of MVy in a slice for CUs of size equal or less than 16x16


48	Slice/frame	Number of slices per frame (more slices decrease compression performance)
49	nr ret trames lised	number of reference frames actually used in a frame (an encoder capable of using more reference frames is probably better at compressing)
50	avg_QP	Average QP in a frame
51	avg_QP_Reference	Average value of the QPs of the frames used as reference picture
52	max_avg_QP_Reference	Maximum Average QP of the frames used as reference picture

Cross Validation

- 560 videos from 10 SRCs:
 - Test videos of 8 SRCs training,
 - Test videos of 1 SRCs validation,
 - Test videos of 1 SRCs testing at model-state with minimum validation error
- 10 combinations of training, testing and validation samples in ANN model

Video Quality Estimation


Artificial Neural Network Model

- Inputs: 52 fetaures of the input Videos
- Hidden layers –35 sigmoid hidden neurons,
- Output layer one linear output neuron,
- Output estimated quality values.

Results (Pearson Correlation)

Input	Average				Minkowski Summation					
Quality Metric	PSNR	PVQM	VQM	SSIM	VIFP	PSNR	PVQM	VQM	SSIM	VIFP
Test 1	0,981	0,911	0,977	0,954	0,976	0,987	0,968	0,982	0,980	0,989
Test 2	0,989	0,955	0,970	0,969	0,993	0,982	0,985	0,984	0,983	0,993
Test 3	0,992	0,968	0,979	0,973	0,988	0,991	0,964	0,982	0,972	0,992
Test 4	0,983	0,977	0,982	0,974	0,990	0,990	0,985	0,984	0,977	0,992
Test 5	0,995	0,972	0,974	0,961	0,993	0,990	0,974	0,971	0,989	0,993
Average	0,988	0,957	0,977	0,966	0,988	0,988	0,975	0,981	0,980	0,992

Reflections

• Feature selection?

Fetaures are computed on Coding Unit (CU)
 level and then ultimately averaged to Video
 sequence level...too much of approximation?

