

JEG-Hybrid large database approach

overview

Video quality metric development

- Key aspect is subjective evaluation
- Difficulties:
 - Assemble a representative and large enough group of people.
 - Controlled environment (BT.500) or equipment to perform the test in normal environment.
 - The time people concentrate on the job is limited. Therefore, in general restrict to 45min/person.
- Conclusion: subjective evaluation is the limiting aspect in video quality metric development.

Video quality metric development

VQEG 2015

Video quality metric development

- Limited amount of source sequences:
 - consider broad SI-TI space
- Limited amount of compression settings:
 - Intra period
 - Bitrate
 - Slices

realistically chosen, but limited

- GOP
- Limited amount of packet loss scenarios
 - Based on Packet Loss Rate percentages
- General applicability of quality metric can not be assumed.

Proposed large database approach

- By using
 - a large database covering
 - as much as possible sequences
 - as much as possible relevant encoder settings
 - as much as possible relevant packet loss scenarios
 - combined with the information delivered from existing full-reference quality metrics
 - and an as limited as possible subjective evaluation
- we try to design a general applicable video quality metric.

HD	Bitrate	500kbps, 1Mbps, 2Mbps, 4Mbps, 8Mbps, 16Mbps			
HFVC	Rate control	Picture adaptive, CU adaptive			
HM 11	QP	26, 32, 38, 46			
	GOP	1, 2, 4, 8			
	Intra period	8, 16, 32, 64			
AVC	Random access	IDR (closed-GOP intra), CDR (open-GOP intra)			
Reduced JM	Resolution	1920x1080, 1280x720, 960x544			
	Slices	0, 2, 4, 1500byte			
x264					

QP	24, 28, 32, 36, 40, 44		
GOP	8		
Intra period	64		
Random access	CDR (open-GOP intra)		
Resolution	3840x2160, 1920x1080, 1280x720		
Slices	0		
Min/Max block size	16/16, 8/16, 16/32, 8/32, 16/64, 8/64		
Search range	16, 32, 64, 96, 128, all		
	QP GOP Intra period Random access Resolution Slices Min/Max block size Search range		

- HD AVC
- 13000 PVS
- HD HEVC
- 60000 PVS
- UHD HEVC
- 40000 PVS

Two packet loss introducing tools

- Packet loss simulation Sirannon
 - Video stream is encapsulated in RTP or MPEG-TS
 - Network transmission is simulated
 - Network packets are removed

<u>Downside</u> is non-compliance of video stream, so decodability is not guaranteed

- Robust reference decoder
 - Decoder handles frame loss by reference buffer management

<u>Advantage</u> is that every frame loss scenario results in decodability

HEVC video stream information extraction

- Machine readable (XML) formatted information from the video stream:
 - Block size
 - Prediction mode (intra/inter)
 - Quantization information
 - Motion vector information
 - Reference frame information
- This tool provides video stream information, so it is applicable in other domains as well:
 - Compressed domain object detection
 - Video stream transcoding

ELIS – Multimedia Lab

Full-reference quality indicators

- PSNR
- SSIM
- VIF
- VQM
- PVQM

Table 2. Correlation between different measurements averaged over the entire sequence.

		Pearson	Spearman
PSNR	SSIM	0.52	0.77
VIF	SSIM	0.93	0.99
PSNR	VIF	0.61	0.81

Table 3. Correlation between different measurements aver-aged over the entire sequence excluding src09.

		Pearson	Spearman
PSNR	SSIM	0.84	0.97
VIF	SSIM	0.93	0.99
PSNR	VIF	0.94	0.97

- PSNR can be misleading:
 - value grows to infinity when encoded lossless.
 - happens on black frames (src09)

- At high quality, most metrics agree.
- At the lower quality end, disagreement starts to appear.

Fig. 3. Comparison between the different evaluated full-reference measurements.

- Analyze pairs of sequences: (i.e., 1,771,285,440 pairs):
- Disagreement between metrics in about 10.5% of the cases.
 - Due to PSNR: 55%
 - Due to SSIM: 30%
 - Due to VIF: 15%
- Sequence dependent

Table 4. Reasons of disagreement among quality measurements for each sequence.

	Pairs with	Due to	Due to	Due to
Sequence	disagreement	PSNR	SSIM	VIF
src01	3.32%	14.47%	60.72%	24.80%
src02	2.64%	40.74%	45.70%	13.56%
src03	6.27%	61.97%	9.30%	28.73%
src04	4.55%	51.17%	11.76%	37.06%
src05	3.30%	37.89%	18.16%	43.95%
src06	4.99%	28.92%	13.84%	57.24%
src07	6.17%	69.45%	7.41%	23.14%
src08	3.93%	24.58%	59.33%	16.09%
src09	7.65%	20.89%	53.62%	25.49%
src10	3.81%	39.76%	12.55%	47.70%

JEG-Hybrid overview Glenn Van Wallendael VQEG 2015

Fig. 4. Reason of disagreement (expressed as a ratio over the total pairs) between the various algorithms as a function of the normalized difference for some sequences, shown in brackets (red: agreement, green: due to PSNR, blue: due to SSIM, light blue: due to VIF).

• With a bigger difference in quality, the metrics tend to agree more.

More information:

• JEG-Hybrid wiki: <u>http://vqegjeg.ugent.be/wiki</u>

