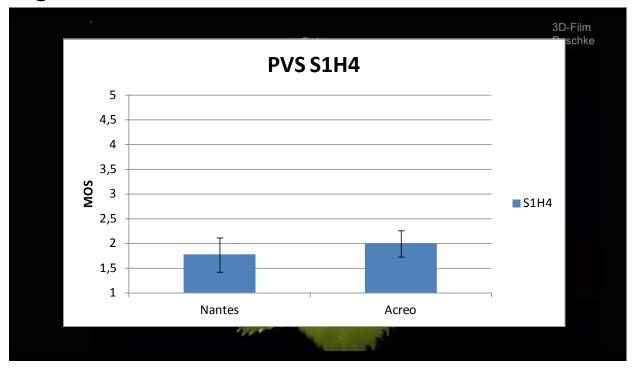
MULTIPLE COMPARISONS IN QOE ANALYSIS

Kjell Brunnström

STATISTICAL ANALYSIS OF EXPERIMENTAL DATA


- Data is collected, then what?
- Mean and standard deviation is usually easily computed
- Common question are two means the same or different?

EXAMPLE

• Example: One video with an error. A number of people in France and an equal number in Sweden rates the quality on a five graded scale

STATISTICAL TEST OR HYPOTHESIS TEST

- Null hypothesis (H₀): One possible arrangement
 - H_0 : $\mu_1 = \mu_2$ (in this case)
- Alternative hypothesis (H₁): all other arrangement
 - H_1 : $\mu_1 \neq \mu_2$ (in this case)
- Student T-test
 - If $t_{obs} \ge t_{critical}$ reject the null hypothesis
 - For example (unequal sample sizes, unequal variance)

$$t_{obs} = \frac{\mu_1 - \mu_2}{s_{diff}}; s_{diff} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}; df = (n_1 - 1) + (n_2 - 1)$$

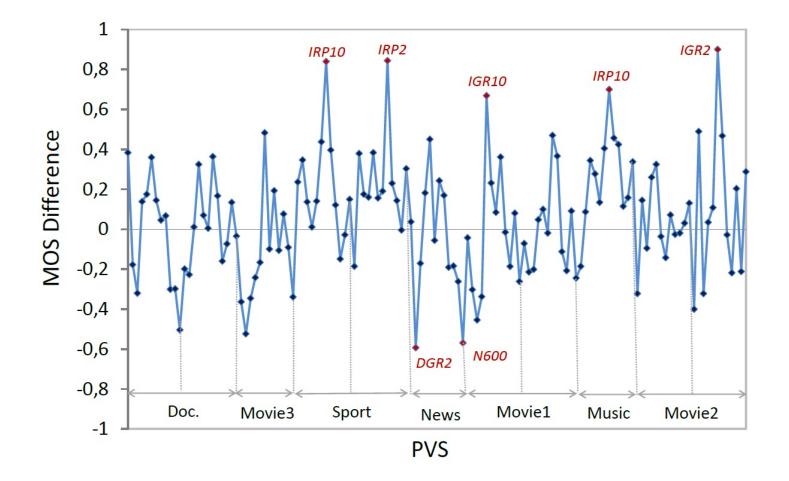
- Our example:
 - $\mu_1 = 1.77; \ \mu_2 = 2.00; \ s_1 = 0.869; \ s_2 = 0.667; \ n_1 = 22; \ n_2 = 19;$
 - t = -0.927; df = 39 + Table => t(40) = 2.02 at 0.05 significance level
 - Abs(t) < t(40)
 - Statistics packages gives p = 0.359

MORE THAN TWO MEAN?

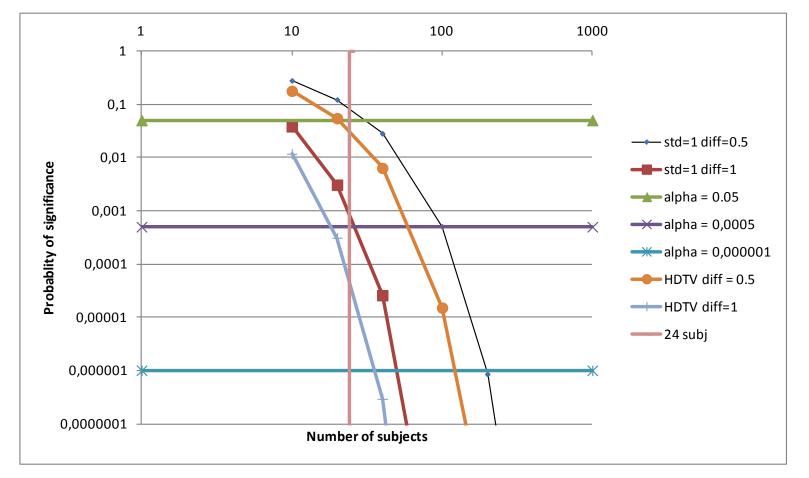
- What if there are more than two means?
- Are the mean the same?
- If we test all the pairs with a t-test, then we know they are the same?
- Unfortunately, there is an increased risk of type-I errors
 - Reject the null hypothesis, although it is true
 - At each pairwise test there is small risk
 - Eg significance level $\alpha = 0.05$ gives 5% risk one comparison and about n^{*} α for n comparisons
- Thus we need to handle this

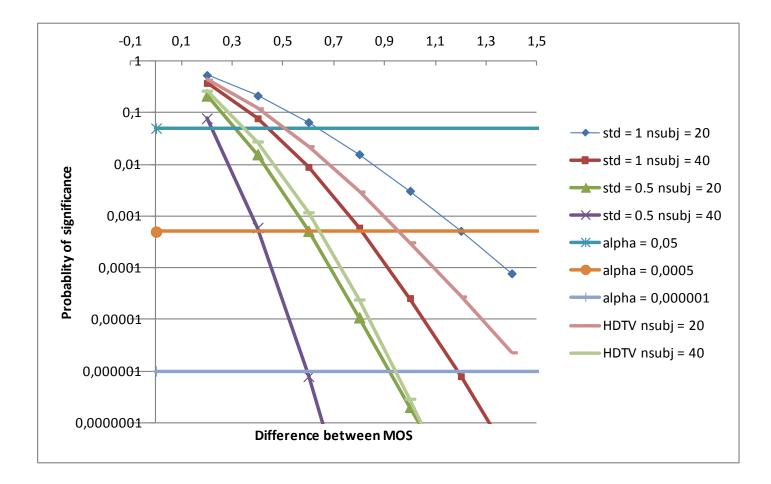
BONFERRONI CORRECTION METHOD

- the signicance level (α) should be divided by the number of comparisons N
- α _comp = α _total/N
- 10 different mean => 10*9/2 comparison 45
- $\alpha_{comp} = 0.05/45 = 0.0011$

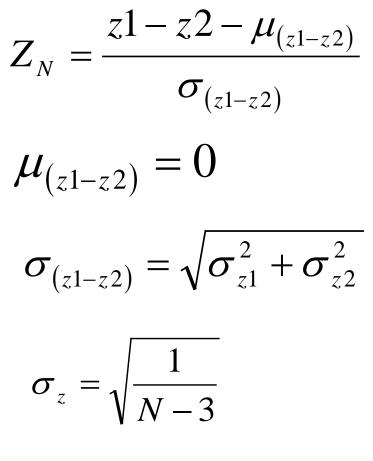

EXAMPLE

- Compare exp 1 and exp 2
 - Same PVSs used in both exp
 - N_PVS = 100
 - Interesting comparison
 - PVS_exp1 (i) with PVS_exp2 (i)
 - If pre-planned gives 100 comparisons
 - If post-hoc gives 100*99/2 = 4950

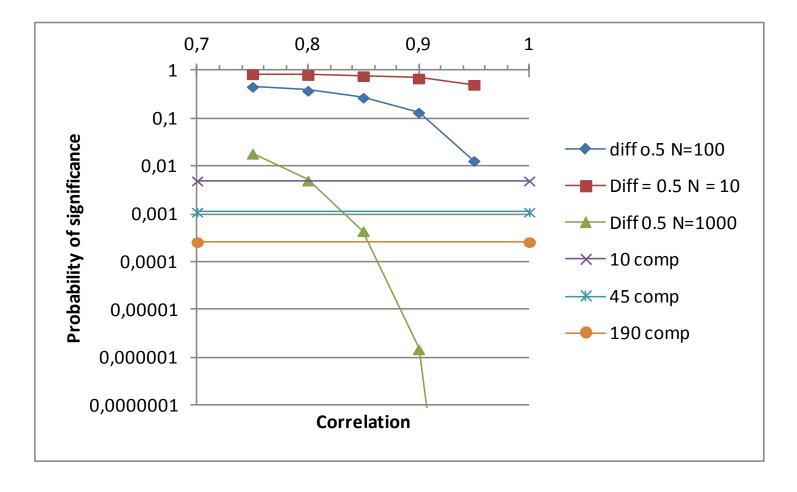

RECENT RESULT

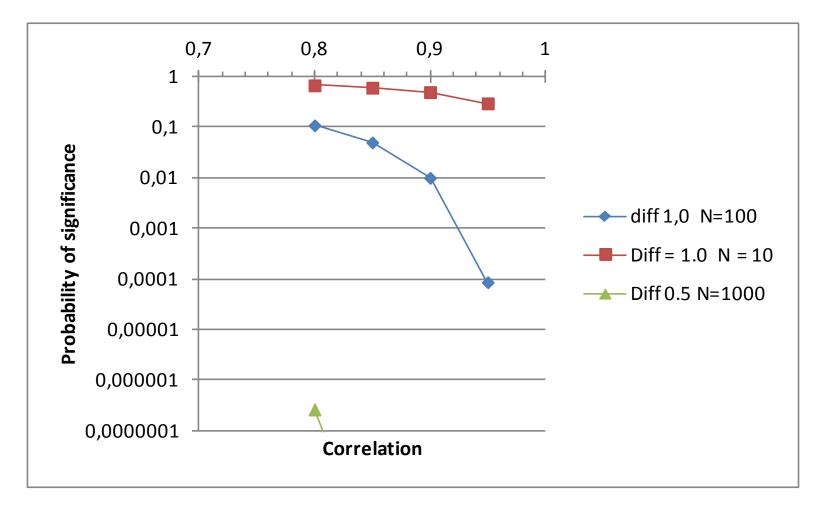

INFLUENCE OF THE NUMBER OF SUBJECTS

INFLUENCE OF DIFFERENCE



CORRELATION SIGNIFICANCE TESTING


- Fisher z-statistics
- Compare with two-tailed
 Student statistics
- If Z_N ≥ t_{critical} reject the null hypothesis


INFLUENCE ON CORRELATION

INFLUENCE ON CORRELATION

INFLUENCE OF RECENT TEST

TABLE II.TEST OF SIGNIFICANT DIFFERENCE FOR SROCC.

	PSNR	MISS	WISS-SW	MARZ	VAR	МдМ	VQM-VFD	PEVQ	V-BLIINDS
PSNR			-		+		-		+
SSIM				+	+			+	+
MS-SSIM	+			+	+			+	+
MARZ		-	-		-	-	-		
VAR	-	-	-	+		-	-	+	
VQM				+	+			+	+
VQM-VFD	+			+	+			+	+
PEVQ		-	-		-	-	-		
V-BLIINDS	-	-	-			-	-		

INFLUENCE OF RECENT TEST

TABLE II.TEST OF SIGNIFICANT DIFFERENCE FOR SROCC.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
PSNR			-		-		+
SSIM						+	+
MS-SSIM	+					+	+
VQM						+	+
VQM-VFD	+					+	+
PEVQ		-	-	-	-		
V-BLIINDS	-	-	-	-	-		

DISCUSSION

- Not correcting for Type-I error may see effect that are not there.
- Correcting will lower efficeincy
- What can be done:
 - More test subjects may be needed
 - Reduce variance
 - Plan comparisons ahead

WWW.ACREO.SE

