## Test plan for VQEG GroTruQoE3D1 database

Jing Li Marcus Barkowsky University of Nantes, France

#### Scope and goals

 Establish a ground truth database for Quality of Experience in 3DTV (GroTruQoE3D) measurement <u>methodologies</u>

 <u>Standardization</u> of subjective assessment methodology for different degradations in 3DTV

#### Outline

- Introduction of video sequences
- Why Pair Comparison test method is selected
- How to boost pair comparison
- How the experiment being conducted collaboratively
- What is the requirement for test setup
- How to analyze the data

## Video sequences-SRC

- 10 (or 11) SRC
- Cover a wide range of different content features
  - coding complexity
  - motion
  - brightness

Comfortable viewing

- 3D effect
- maximum disparity range
- YUV422, Full HD, 25fps, 16seconds (except "Umbrella" 13 seconds)



## Video sequences-HRC

#### 18 HRC: Selected based on three scales: "image quality", "visual comfort" and "depth quantity" \*

|     |                                                   | Encoding        |            |        |                |                 |
|-----|---------------------------------------------------|-----------------|------------|--------|----------------|-----------------|
| HRC | Remarks                                           | Encoder         | Bitrate/QF | GOP    | Packet loss    | Decoding        |
| C   | (reference 3D)                                    |                 |            |        |                |                 |
| 1   | (reference 2D)                                    |                 |            |        |                |                 |
| 2   | spatial resolutiuon reduction by 4 with lanczos 3 | filter          |            |        |                |                 |
| 3   | fps reduction by 3                                |                 |            |        |                |                 |
| 4   | Brightness at 80% (Only one view is changed)      |                 |            |        |                |                 |
| 5   | gamma at 0.5 (Only one view is changed)           |                 |            |        |                |                 |
| 6   | horizontal disparty offset -30 pixel              |                 |            |        |                |                 |
| 7   | horizontal disparty offset 30 pixel               |                 |            |        |                |                 |
| 8   | vertical disparity offset -20 pixel               |                 |            |        |                |                 |
| g   | graphical distortion with stirmark (Only one view | is changed)     |            |        |                |                 |
| 10  | 2D to 30 Using geometric deformation              |                 |            |        |                |                 |
| 1   |                                                   | JM 18.2         | ~/32       | IBBP64 |                | JM18.2          |
| 12  |                                                   | JM 18.2         | ~/44       | IBBP64 |                | JM18.2          |
| 13  | asymetric view                                    | JM 18.2         | ~/32 ~/44  | IBBP64 |                | JM18.2          |
| 14  | Edge enhancement at 40%                           | JM 18.2         | ~/32       | IBBP64 |                | JM18.2          |
| 15  | error concealment (Only one view is changed)      | JM 18.2         | ~/32       | IBBP64 | gilbert strong | JM18.2          |
| 10  | 2D video (left view)                              | JM 18.2         | ~/44       | IBBP64 |                | JM18.2          |
| 17  | JPEG2000 Encoding                                 | Jpeg2000 kakadu | 523Mbps/~  |        |                | Jpeg2000 kakadu |

\*The selection was performed based on votes from experts from the Mid Sweden University (MIUN) Details see <u>https://docs.google.com/spreadsheet/ccc?key=0ArzgrjHcemZYdHk3ZGhOZ0w0VzFHbIA1M0ROLTJCQ1E#gid=2</u>

### Outline

- Introduction of video sequences
- Why Pair Comparison test method is selected
- How to boost pair comparison
- How the experiment being conducted collaboratively
- What is the requirement for test setup
- How to analyze the data

# Quality of Experience (QoE) in 3DTV



# Subjective assessment methodology for QoE in 3DTV

- 2D image quality assessment [P.910][BT.500]
- ACR (Absolute Category Rating)
- DSCQS (Double-Stimulus Continuous Quality Scale)
- SSCQE (Single Stimulus Continuous Quality Evaluation)



# On <u>each dimension</u> of 3D QoE <sup>[BT.2021]</sup>

- Image quality
- Visual comfort
- Depth quality

# Example: scale interpretation & observer variability

• A Co-joint ACR experiment for visual comfort and image quality in 3DTV [Engelke2011]



# Example: scale interpretation & observer variability

• A Co-joint ACR experiment for visual comfort and image quality in 3DTV [Engelke2011]



# Example: scale interpretation & observer variability

• A Co-joint ACR experiment for visual comfort and image quality in 3DTV [Engelke2011]



# Example: scale interpretation & observer variability

• A Co-joint ACR experiment for visual comfort and image quality in 3DTV [Engelke2011]



# Example: scale interpretation & observer variability

• A Co-joint ACR experiment for visual comfort and image quality in 3DTV [Engelke2011]



 Subjects are not always capable of expressing their perceptions or impression by means of an exact numerical value.



#### Observers

- not used to 3D
- $\rightarrow$  difficult to link the perception with experience
- Language differences excellent, bon, ... in french



#### A good alternative...



 Easy to implement for subjects

#### Pair Comparison

- Compare different degradations of same content

• Time-sequential







 $A_i A_j$ : Stimulus with content A under test condition *i* and *j*, respectively.  $B_k B_l$ : Stimulus with content B under test condition *k* and *l*, respectively.

• Time-parallel





 $A_i A_j$ : Stimulus with content A under test condition *i* and *j*, respectively.  $B_k B_l$ : Stimulus with content B under test condition k and l, respectively.

# Limitation of Pair Comparison in real application



Using Time-sequential presentation, for example:

For each comparison: A1 (10s)+gray(2s)+A2 (10s)+voting (5s) = 27s

# Limitation of Pair Comparison in real application Pair Comparison is not feasible...

All pairs have to be compared...





For a ACR test: 40 stimuli \*15s = 10 minutes !

Using Time-sequential presentation, for example:

For each comparison: A1 (10s)+gray(2s)+A2 (10s)+voting (5s) = 27s

#### Outline

- Introduction of video sequences
- Why Pair Comparison test method is selected
- How to boost pair comparison
- How the experiment being conducted collaboratively
- What is the requirement for test setup
- How to analyze the data

# To reduce the number of comparisons...

 $\checkmark\,$  Select a subset of the whole pairs for comparison

#### • Efficient:

 $\rightarrow$  the selected pairs should provide more information on the final scale values than other pairs.

#### • Balanced:

The occurrence frequency of each stimulus is equal.

 $\rightarrow$  to avoid any bias effects from presentation frequency of a particular stimulus

#### • Robust:

The selection of the pairs would be more robust to observation errors that often happen in a subjective test <sup>[Li2012]</sup>.

#### Analysis

If we can only compare two pairs to determine the distances between A,B,C, which two pairs should we select?



Example:

Choose AB  $\rightarrow$  closer, 15 out of 20 observers select A

Choose AC  $\rightarrow$  too far away

 $\rightarrow$  With a small number of observations, almost all observers choose A



Jing Li, Marcus Barkowsky, Patrick Le Callet, (2012). "Analysis and improvement of a paired comparison method in the application of 3DTV subjective experiment", ICIP.

#### Analysis

If we can only compare two pairs to determine the distances between A,B,C, which two pairs should we select?



Statistical analysis showed that comparison on closer pairs would

- generate more precise results than distinct pairs;
- be more robust to observation errors than distinct pairs [LilCIP2012]
- ➤ To design an <u>efficient</u> and <u>robust</u> design, comparisons should be concentrated on closer pairs! → AB, BC rather than OTHERS

Jing Li, Marcus Barkowsky, Patrick Le Callet, (2012). "Analysis and improvement of a paired comparison method in the application of 3DTV subjective experiment", ICIP.

#### Analysis

If we can only compare two pairs to determine the distances between A,B,C, which two pairs should we select?



Statistical analysis showed that comparison on closer pairs would

- generate more precise results than distinct pairs;
- be more robust to observation errors than distinct pairs [LilCIP2012]
- ➤ To design an <u>efficient</u> and <u>robust</u> design, comparisons should be concentrated on closer pairs! → AB, BC rather than OTHERS

#### How about balance?

Jing Li, Marcus Barkowsky, Patrick Le Callet, (2012). "Analysis and improvement of a paired comparison method in the application of 3DTV subjective experiment", ICIP.

## **Optimized Rectangular Design**

Supposing the <u>rank ordering</u> of the video sequences is available:

A1 A5 A3 A9 A8 A4 A2 A7 A6

Arrangement of matrix





- 1. Closer stimuli are arranged close to each other  $\rightarrow$  <u>efficient</u> & <u>robust</u>
- 2. Only compare stimuli which are in the same column or row
  - ightarrow reduce the number of comparison
  - $\rightarrow$  occurrence of each stimulus is <u>balanced</u> (e.g., 4 times for each stimulus)

#### Outline

- Introduction of video sequences
- Why Pair Comparison test method is selected
- How to boost pair comparison
- How the experiment being conducted collaboratively
- What is the requirement for test setup
- How to analyze the data

#### Situation

- 10 SRCs
- 18 HRCs  $\rightarrow$  using 3×6 ORD method  $\rightarrow$  63 pairs
- Comparison only conducted within SRC $\rightarrow$  63\*10=630 pairs

#### For one pair:

- Time-sequential: 16(A)+2(gray)+16(B)+5(vote)=39 seconds
- Time-parallel: 16 (AB)+5(vote)=21 seconds

#### For 630 pairs

- Time-sequential: 630\*39 = 409.5 minutes per observer
- Time-parallel: 630\*21 = 220.5 minutes per observer

#### We need collaboration!!

## **Problem & Solution**

#### • Different labs

- different display technology
- different observers
- different screen size

- ...

- different presentation method

#### • Before collecting the data from different labs

- $\rightarrow$  We need a common set to evaluate the possibility of collection
- → A precise test plan is provided try to minimize the unnecessary effects

1. The number of pairs of the common set should be <u>large enough</u> for analysis

2. The pairs should be <u>included in the whole test pairs</u> by ORD matrix

|    | NO 2 | 3  | 4  | 5  | 6  |
|----|------|----|----|----|----|
| 7  | 8    | 9  | 10 | 11 | 12 |
| 13 | 14   | 15 | 16 | 17 | 0  |

3. As the total number of comparisons for each observer is very limited (within 50mins), the common set should be <u>not too large</u>...



#### For all HRCs

Degradations have been evaluated by 4 experts from the Mid Sweden University (MIUN) on the three scale "picture quality", "depth quantity", "visual discomfort"

• Common set should cover the whole range of each of the three dimensions

Common set should be part of the whole test pairs



Closer pairs should be arranged in the same column or row of the ORD matrix

#### **Design of Common Set**



- Common set includes representative of three dimensions
- Common set should be a part of the 3 ×6 matrix for ORD method
- Closer HRC pairs are arranged in the same column or row



- Common set includes 18 HRC pairs
- Two SRCs are used to avoid too many repeated video contents
- $\rightarrow$  18\*2 = 36 common set pairs for each lab

For time-sequential lab (39 seconds/pair): The test should be within 50 minutes for one observer  $\rightarrow$  50\*60/39 = 77 pairs

36 common set pair with 2 video contentsThe rest 77-36 = 41 pairs are shared by the rest 8 contents





- Common set includes 18 pairs
- Two SRCs are used to avoid too many repeated video contents
- $\rightarrow$  18\*2 = 36 common set pairs for each lab





- Common set includes 18 pairs
- Two SRCs are used to avoid too many repeated video contents
- $\rightarrow$  18\*2 = 36 common set pairs for each lab





HRC Group1: (16,14), (14,10), (10,7), (7,6), (6,8), (8,5), (5,9), (9,12), (12,16). HRC Group2: (16,10), (12,6), (12,7), (9,8), (16,9), (14,6), (14,8), (10,5), (7,5).

#### All HRCs have the same occurrency $\rightarrow$ balance

## Assignment of all the other pairs



## Assignment of all HRC pairs

| SRC                 | Time-parallel method |        |        |        | Time-sequential method |        |        |        |
|---------------------|----------------------|--------|--------|--------|------------------------|--------|--------|--------|
|                     | Lab1                 | Lab2   | Lab3   | Lab4   | Lab5                   | Lab6   | Lab7   | Lab8   |
| 1                   | 8+9(9)               | 8+9(9) | 8+9(9) | 8+9(9) | 4+9(9)                 | 3+9(9) | 3+9(9) | 3+9(9) |
| 2                   | 8+9(9)               | 8+9(9) | 8+9(9) | 8+9(9) | 3+9(9)                 | 4+9(9) | 3+9(9) | 3+9(9) |
| 3                   | 11                   | 11     | 11     | 11     | 5                      | 5      | 5      | 4      |
| 4                   | 11                   | 11     | 11     | 11     | 5                      | 5      | 4      | 5      |
| 5                   | 11                   | 11     | 11     | 11     | 5                      | 4      | 5      | 5      |
| 6                   | 11                   | 11     | 11     | 11     | 4                      | 5      | 5      | 5      |
| 7                   | 11                   | 11     | 11     | 11     | 5                      | 5      | 5      | 4      |
| 8                   | 11                   | 11     | 11     | 11     | 5                      | 5      | 4      | 5      |
| 9                   | 11                   | 11     | 11     | 11     | 5                      | 4      | 5      | 5      |
| 10                  | 11                   | 11     | 11     | 11     | 4                      | 5      | 5      | 5      |
| No. of<br>Pairs/obs | 122                  | 122    | 122    | 122    | 63                     | 63     | 62     | 62     |

## Playlist for each lab

For each lab, the playlist has the following constraints:

- The consecutive contents are not same.
- The presentation order AB and BA are balanced for all observers.

#### Each lab will be provided a playlist by IRCCyN with the following format:

|       | Observer 1 |              |               | 0   | •••          |               |  |
|-------|------------|--------------|---------------|-----|--------------|---------------|--|
| Order | SRC        | HRC-<br>left | HRC-<br>right | SRC | HRC-<br>left | HRC-<br>right |  |
| 1     | 3          | 12           | 6             | 4   | 6            | 11            |  |
| 2     | 1          | 7            | 17            | 7   | 12           | 7             |  |
| 3     | 6          | 14           | 1             | 8   | 15           | 11            |  |
|       |            |              |               |     |              |               |  |

The pair presentation order MUST be strictly follow the playlist provided for each observer in each lab

- 3 individual spreadsheets for
  - " experiment description"
  - "observer information"
  - " result data"

- 3 individual spreadsheets for
  - "experiment description"
  - "observer information"
  - "result data"

•Lab name

- •Subjective test description (e.g., VQEG GroTruQoE3D)
- •Test environment (living room or standard lab)
- •Test method (e.g., Time-Parallel pair comparison)
- •Display model
- •Display size
- •Display resolution
- •Display technology (shutter glasses or polarize)
- •Display calibration tool
- •Viewing distance
- •Number of observers
- •Source content description (the ID should be consistent for all labs)
- •HRC description (the ID should be consistent for all labs)

- 3 individual spreadsheets for
  - " experiment description"
  - "observer information"
  - "result data"

Observer ID Visual Acuity Left Visual Acuity Right Color Vision Depth Acuity Experience 3D Age Nationality Gender Experience of Quality Test Eye correction

- 3 individual spreadsheets for
  - " experiment description"
  - "observer information"
  - "result data" for each observer

| Order | SRC | HRC-<br>left | HRC-<br>right | Video file name                                | Voting<br>duration | Voting<br>result |
|-------|-----|--------------|---------------|------------------------------------------------|--------------------|------------------|
| 1     | 1   | 0            | 2             | <pre>src1_hrc0_v01.avi src1_hrc2_v01.avi</pre> | 4.1s               | L                |
| 2     | 3   | 1            | 4             | Src3_hrc1_v01.avi<br>src3_hrc4_v01.avi         | 2.2s               | L                |
| 3     | 7   | 2            | 3             | Src7_hrc2_v01.avi<br>src7_hrc3_v01.avi         | 3.4s               | R                |
|       |     |              |               |                                                |                    |                  |

#### Outline

- Introduction of video sequences
- Why Pair Comparison test method is selected
- How to boost pair comparison
- How the experiment being conducted collaboratively
- What is the requirement for test setup
- How to analyze the data

#### Test setup requirement

- Test environment: BT500
- 3D display: must be calibrated
- Viewing distance: 3H for shutter glasses, 4.5H for polarized display
- Number of observers: 40
- Pre-test vision check
- Training
- Prior and post- QUESTIONNAIRES
- ... see test plan

#### Test setup requirement

For Time-parallel presentation:

- Two 3D displays
- They must be the same model
- They must be synchronized when displaying

#### For all:

 Observer's ID, voting results, stimulus pair information must be recorded synchronously.

#### Outline

- Introduction of video sequences
- Why Pair Comparison test method is selected
- How to boost pair comparison
- How the experiment being conducted collaboratively
- What is the requirement for test setup
- How to analyze the data

- Common set
  - $\rightarrow$  cross-lab results verification

- Common set
  - $\rightarrow$  cross-lab results verification
- Barnard's exact test

| Pair AB      | Lab 1 | Lab 2 | Total   |
|--------------|-------|-------|---------|
| Choose A     | m1    | m2    | M=m1+m2 |
| Choose B     | N1-m1 | N2-m2 | N-m     |
| Total Number | N1    | N2    | N       |

Test: if m1/N1 is significantly different from m2/N2

For example, 5/20 is NOT significantly different from 8/20 (p-value = 0.26 > 0.05)

#### Data analysis

- Common set
  - $\rightarrow$  cross-lab results verification
- Barnard's exact test

total number of sig.

diff. pairs

| HRC pair | Lab 1 | Lab2  | Sig.diff |
|----------|-------|-------|----------|
| 5 vs 7   | 5/20  | 6/20  | NO       |
| 5 vs 8   | 8/20  | 7/20  | NO       |
| 6 vs 7   | 10/20 | 10/20 | NO       |
| 6 vs 8   | 7/20  | 9/20  | NO       |
| 7 vs 10  | 3/20  | 9/20  | YES      |
| 7 vs 12  | 14/20 | 13/20 | NO       |
| 8 vs 9   | 11/20 | 10/20 | NO       |
|          |       |       | 40       |

- Common set
  - $\rightarrow$  cross-lab results verification
- Barnard's exact test

#### 18 common set pairs per SRC

- If the total number of sig. diff. pair (per SRC)between lab1 and lab2 < =2</li>
   → results of lab1 and lab2 are NOT sig. diff. (error level =0.05)
   → can be combined...
- If the total number of sig. diff pair (per SRC) between lab1 and lab2 <=3</li>
   → results of lab1 and lab2 are NOT sig. diff. (error level =0.1)
- Otherwise, further analysis is necessary.

#### ➢ Bradley-Terry (BT) model

 $\rightarrow$  convert Pair Comparison data to scale values



7 observers chose HRC1 13 observers chose HRC2

#### Bradley-Terry (BT) model

 $\rightarrow$  convert Pair Comparison data to scale values



The BT score generated by the combined pair comparison data is the subjective score of the database

#### Summary

- Subjective methodology  $\rightarrow$  BT500, P910
- "...However, as QoE of 3DTV is a multidimensional concept, how to measure it is still a question..."
- "...Pair Comparison is one of the optimal solutions, however, it is time infeasible..."

We have ORD (and ARD) to reduce the number of pairs for Pair Comparison !

#### Schedule



#### Participating labs

| LAB      | YES/NO | Method* | Group1 | Group2 |
|----------|--------|---------|--------|--------|
| Acreo    |        |         |        |        |
| NTIA     |        |         |        |        |
| Vittorio |        |         |        |        |
| Intel    |        |         |        |        |
| KDDI     |        |         |        |        |
| AGH      |        |         |        |        |
| Yonsei   |        |         |        |        |
| Orange   |        |         |        |        |
| UPM      | Y      | Р       | Х      |        |
| INSA     | Y      | S       |        | Х      |
| IRCCyN   | Y      | Р       | Х      |        |
|          |        |         |        |        |
|          |        |         |        |        |

#### \*Method: time-parallel (P) or time-sequential (S)

## Appendix I: Evaluation of ORD

#### Monte-Carlo simulation test

- Each stimulus has a single score;
- In each observation, the observed value follows a Gaussian distribution, the mean value is the stimulus score and the standard deviation is 0.7, which is obtained from the subjective scores of VQEG HDTV Final Report;
- Each observer has a 5% probability to make a mistake on an observation, i.e., inverting the vote;
- Each comparison is independent.



# Appendix II: Barnard's exact test on Common set





20 observations/pair Obs error level =  $0.05 \rightarrow 0.1*20 = 2$  sig. diff. Obs error level =  $0.1 \rightarrow 0.15*20=3$  sig. diff

#### Appendix II: BT score analysis on Common set



## Pair Comparison procedure

• A given physical stimulus does not always produce the same psychological experience.



## Pair Comparison procedure

• A given physical stimulus does not always produce the same psychological experience.

