Data Analysis Proposition

Lucjan Janowski, AGH

June 11, 2012

Lucjan Janowski, AGH Data Analysis Proposition

・ロト ・日子・ ・ ヨト

General Description MOSes Analysis

Single Indicator Analysis Multiple Indicators Analysis

Data Flows

Indicators $x_{i,j}$

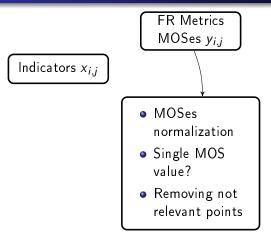
イロン イヨン イヨン イヨン

æ

General Description

MOSes Analysis Single Indicator Analysis Multiple Indicators Analysis

Data Flows

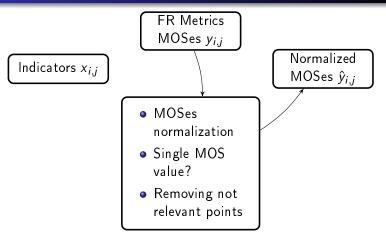


・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

General Description MOSes Analysis

Single Indicator Analysis Multiple Indicators Analysis

Data Flows

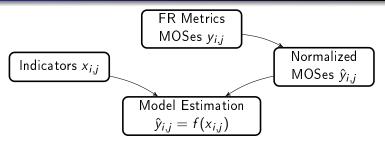


・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

General Description

MOSes Analysis Single Indicator Analysis Multiple Indicators Analysis

Data Flows



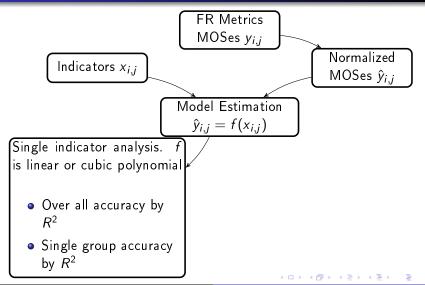
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

General Description MOSes Analysis

Single Indicator Analysis Multiple Indicators Analysis

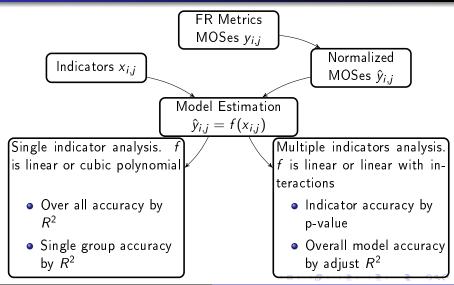
Data Flows



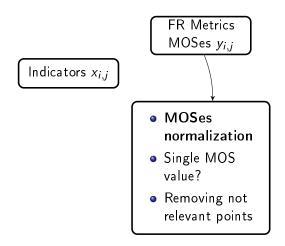
General Description MOSes Analysis

Single Indicator Analysis Multiple Indicators Analysis

Data Flows



Data Flows



イロト イポト イヨト イヨト

Normalization

• Why do we need it?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Normalization

- Why do we need it?
- If two metrics are correlated then one metric value can be computed by: MOS_{i,1} = aMOS_{i,2} + b

Normalization

- Why do we need it?
- If two metrics are correlated then one metric value can be computed by: $MOS_{i,1} = aMOS_{i,2} + b$
- If $|MOS_{i,1} MOS_{i,2}| > \epsilon$ it means nothing

- Why do we need it?
- If two metrics are correlated then one metric value can be computed by: MOS_{i,1} = aMOS_{i,2} + b
- If $|MOS_{i,1} MOS_{i,2}| > \epsilon$ it means nothing
- if |MOS_{i,1} − (aMOS_{i,2} + b)| > ε it means that MOS_{i,1} and MOS_{i,2} are not well correlated at least for *i*th PVS

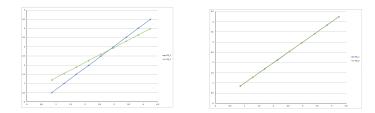
- Why do we need it?
- If two metrics are correlated then one metric value can be computed by: MOS_{i,1} = aMOS_{i,2} + b
- If $|MOS_{i,1} MOS_{i,2}| > \epsilon$ it means nothing
- if |MOS_{i,1} − (aMOS_{i,2} + b)| > ε it means that MOS_{i,1} and MOS_{i,2} are not well correlated at least for *i*th PVS
- If more than two metrics are used a base metric has to be chosen

- Why do we need it?
- If two metrics are correlated then one metric value can be computed by: MOS_{i,1} = aMOS_{i,2} + b
- If $|MOS_{i,1} MOS_{i,2}| > \epsilon$ it means nothing
- if |MOS_{i,1} − (aMOS_{i,2} + b)| > ε it means that MOS_{i,1} and MOS_{i,2} are not well correlated at least for *i*th PVS
- If more than two metrics are used a base metric has to be chosen
- For HDTV it was set of subjective MOSes, for JEG-Hybrid it cannot be assumed

- Why do we need it?
- If two metrics are correlated then one metric value can be computed by: MOS_{i,1} = aMOS_{i,2} + b
- If $|MOS_{i,1} MOS_{i,2}| > \epsilon$ it means nothing
- if |MOS_{i,1} − (aMOS_{i,2} + b)| > ε it means that MOS_{i,1} and MOS_{i,2} are not well correlated at least for *i*th PVS
- If more than two metrics are used a base metric has to be chosen
- For HDTV it was set of subjective MOSes, for JEG-Hybrid it cannot be assumed
- Mean MOS of all metrics works the best probably

(日) (同) (三) (三)

Example



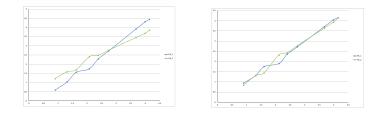
Input data

Normalized metrics

イロン イヨン イヨン イヨン

æ

Example with Errors



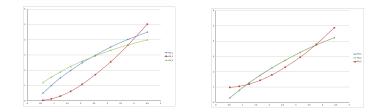
Input data

Normalized metrics

イロト イヨト イヨト イヨト

臣

Example Non Linear



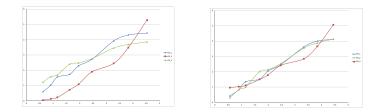
Input data

Normalized metrics

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Example Non Linear with Errors

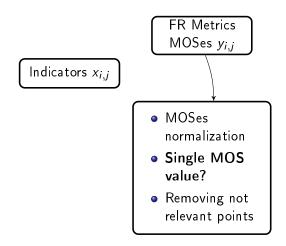


Input data

Normalized metrics

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Data Flows



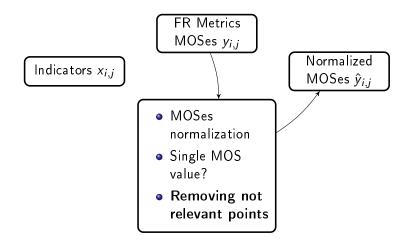
イロト イヨト イヨト イヨト

Single MOS or Multiple MOSes

- More points more information
- An alternative solution is regression including errors
- Is an error for 3-4 points really meaning full?
- If all points are used a perfect metric has R^2 different from 1 since the metrics inaccuracy makes the target function irrelevant

イロン イヨン イヨン イ

Data Flows



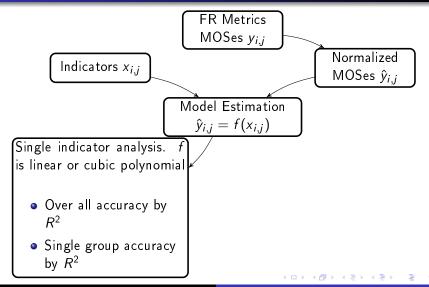
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Removing not Relevant Points

- $|MOS_{i,1} (aMOS_{i,2} + b)| > \epsilon$ is changed to $|\hat{y}_{i,1} \hat{y}_{i,2}| > \epsilon$.
- For many metrics PVS_j is removed if $\max_j |\hat{y}_{i,j} \hat{y}_{i,j}| > \epsilon$
- What should be e value?
- Typical subjective experiment error? Which is?

Data Flows



PVS Grouping

- An indicator can work just for some PVSes (e.g. frame rate change only)
- Single PVS can be a member of many different groups
- Each analysis is performed on each group including all data
- Group of PVSes is a set of *i* indexes *I_k*

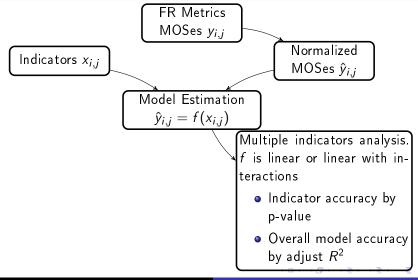
Analysis

Let us consider metric number 1

- Estimate a and b of a linear fit $\hat{y}_{i,j} = a x_{i,1} + b$ for $i \in I_k$ and all j and k
- Calculate R^2 for the obtained fit
- $x_{\cdot,1}$ normalization by $\frac{x_{i,1}-\bar{x}_1}{\sigma_{x_{i,1}}}$ where $\sigma_{x_{i,1}}$ is the standard deviation
- Estimate a cubic fit for $\hat{y}_{i,j} = \sum_{l=0}^{3} a_l x_{i,1}^l$ for $i \in I_k$ and all j and k
- Chucking p-values of a₁ is the metric non linear?
- Calculate R^2 for the obtained fit

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Data Flows



Analysis

- $x_{\cdot,1}$ normalization by $\frac{x_{i,1}-\overline{x}_1}{\sigma_{x_{i,1}}}$ where $\sigma_{x_{i,1}}$ is standard deviation
- Estimate a linear fit $\hat{y}_{i,j} = \sum_{l} a_l x_{i,b_l} + b$ for $i \in I_k$ and all j, k and all possible combinations of b_l values if possible $\hat{y}_{i,j} = a_1 x_{i,1} + a_2 x_{i,2} + b$; $\hat{y}_{i,j} = a_1 x_{i,1} + a_2 x_{i,3} + b$; $\hat{y}_{i,j} = a_1 x_{i,2} + a_2 x_{i,3} + b$; $\hat{y}_{i,j} = a_1 x_{i,1} + a_2 x_{i,2} + a_3 x_{i,3} + b$
- First step is p-values analysis: is particular indicator statistically important?
- Removing not statistically important indicators and than adjust R² computation

Analysis

- Metrics "cooperation" $\hat{y}_{i,j} = a_0 + a_1 x_{i,1} + a_2 x_{i,2} + a_3 x_{i,1} x_{i,2}$ for $i \in I_k$ and all j and k
- First step is p-values analysis: is particular indicator statistically important? Looking especially on the metrics products coefficients
- Removing not statistically important indicators and than adjust R^2 computation