Data Analysis Proposition

Lucjan Janowski, AGH

June 11, 2012

Data Flows

FR Metrics MOSes $y_{i, j}$

Indicators $x_{i, j}$

Data Flows

Normalization

- Why do we need it?

Normalization

- Why do we need it?
- If two metrics are correlated then one metric value can be computed by: $\mathrm{MOS}_{i, 1}=a \mathrm{MOS}_{i, 2}+b$

Normalization

- Why do we need it?
- If two metrics are correlated then one metric value can be computed by: $\mathrm{MOS}_{i, 1}=a \mathrm{MOS}_{i, 2}+b$
- If $\left|M O S_{i, 1}-M O S_{i, 2}\right|>\epsilon$ it means nothing

Normalization

- Why do we need it?
- If two metrics are correlated then one metric value can be computed by: $\mathrm{MOS}_{i, 1}=a \mathrm{MOS}_{i, 2}+b$
- If $\left|\mathrm{MOS}_{i, 1}-\operatorname{MOS}_{i, 2}\right|>\epsilon$ it means nothing
- if \mid MOS $_{i, 1}-\left(a M O S_{i, 2}+b\right) \mid>\epsilon$ it means that $M O S_{i, 1}$ and $M O S_{i, 2}$ are not well correlated at least for i th PVS

Normalization

- Why do we need it?
- If two metrics are correlated then one metric value can be computed by: $\mathrm{MOS}_{i, 1}=a \mathrm{MOS}_{i, 2}+b$
- If $\left|M O S_{i, 1}-M O S_{i, 2}\right|>\epsilon$ it means nothing
- if \mid MOS $_{i, 1}-\left(a M O S_{i, 2}+b\right) \mid>\epsilon$ it means that $\operatorname{MOS}_{i, 1}$ and $M O S_{i, 2}$ are not well correlated at least for ith PVS
- If more than two metrics are used a base metric has to be chosen

Normalization

- Why do we need it?
- If two metrics are correlated then one metric value can be computed by: $\mathrm{MOS}_{i, 1}=a \mathrm{MOS}_{i, 2}+b$
- If \mid MOS $_{i, 1}-$ MOS $_{i, 2} \mid>\epsilon$ it means nothing
- if \mid MOS $_{i, 1}-\left(a M O S_{i, 2}+b\right) \mid>\epsilon$ it means that MOS $_{i, 1}$ and $M O S_{i, 2}$ are not well correlated at least for ith PVS
- If more than two metrics are used a base metric has to be chosen
- For HDTV it was set of subjective MOSes, for JEG-Hybrid it cannot be assumed

Normalization

- Why do we need it?
- If two metrics are correlated then one metric value can be computed by: $\mathrm{MOS}_{i, 1}=a \mathrm{MOS}_{i, 2}+b$
- If $\left|\mathrm{MOS}_{i, 1}-\operatorname{MOS}_{i, 2}\right|>\epsilon$ it means nothing
- if \mid MOS $_{i, 1}-\left(a M O S_{i, 2}+b\right) \mid>\epsilon$ it means that MOS $_{i, 1}$ and $M O S_{i, 2}$ are not well correlated at least for ith PVS
- If more than two metrics are used a base metric has to be chosen
- For HDTV it was set of subjective MOSes, for JEG-Hybrid it cannot be assumed
- Mean MOS of all metrics works the best probably

Example

Input data

Normalized metrics

Example with Errors

Input data

Normalized metrics

Example Non Linear

Input data

Normalized metrics

Example Non Linear with Errors

Input data

Normalized metrics

Data Flows

Single MOS or Multiple MOSes

- More points more information
- An alternative solution is regression including errors
- Is an error for 3-4 points really meaning full?
- If all points are used a perfect metric has R^{2} different from 1 since the metrics inaccuracy makes the target function irrelevant

Data Flows

Removing not Relevant Points

- \mid MOS $_{i, 1}-\left(a\right.$ MOS $\left._{i, 2}+b\right) \mid>\epsilon$ is changed to $\left|\hat{y}_{i, 1}-\hat{y}_{i, 2}\right|>\epsilon$.
- For many metrics $P V S_{j}$ is removed if $\max _{j}\left|\hat{y}_{i, j}-\hat{y}_{i, j}\right|>\epsilon$
- What should be ϵ value?
- Typical subjective experiment error? Which is?

Data Flows

PVS Grouping

- An indicator can work just for some PVSes (e.g. frame rate change only)
- Single PVS can be a member of many different groups
- Each analysis is performed on each group including all data
- Group of PVSes is a set of i indexes I_{k}

Analysis

Let us consider metric number 1

- Estimate a and b of a linear fit $\hat{y}_{i, j}=a x_{i, 1}+b$ for $i \in I_{k}$ and all j and k
- Calculate R^{2} for the obtained fit
- $x_{\cdot, 1}$ normalization by $\frac{x_{i, 1}-\bar{x}_{1}}{\sigma_{x_{i, 1}}}$ where $\sigma_{x_{i, 1}}$ is the standard deviation
- Estimate a cubic fit for $\hat{y}_{i, j}=\sum_{l=0}^{3} a_{l} x_{i, 1}^{l}$ for $i \in I_{k}$ and all j and k
- Chucking p-values of a_{l} - is the metric non linear?
- Calculate R^{2} for the obtained fit

Data Flows

Analysis

- $x_{\cdot, 1}$ normalization by $\frac{x_{i, 1}-\bar{x}_{1}}{\sigma_{x_{i, 1}}}$ where $\sigma_{x_{i, 1}}$ is standard deviation
- Estimate a linear fit $\hat{y}_{i, j}=\sum_{l} a_{l} x_{i, b_{l}}+b$ for $i \in I_{k}$ and all j, k and all possible combinations of b_{l} values - if possible $\hat{y}_{i, j}=a_{1} x_{i, 1}+a_{2} x_{i, 2}+b ; \hat{y}_{i, j}=a_{1} x_{i, 1}+a_{2} x_{i, 3}+b ;$ $\hat{y}_{i, j}=a_{1} x_{i, 2}+a_{2} x_{i, 3}+b ; \hat{y}_{i, j}=a_{1} x_{i, 1}+a_{2} x_{i, 2}+a_{3} x_{i, 3}+b$
- First step is p-values analysis: is particular indicator statistically important?
- Removing not statistically important indicators and than adjust R^{2} computation

Analysis

- Metrics "cooperation" $\hat{y}_{i, j}=a_{0}+a_{1} x_{i, 1}+a_{2} x_{i, 2}+a_{3} x_{i, 1} x_{i, 2}$ for $i \in I_{k}$ and all j and k
- First step is p-values analysis: is particular indicator statistically important? Looking especially on the metrics products coefficients
- Removing not statistically important indicators and than adjust R^{2} computation

