Importance of shooting, scene and visualization parameters for subjective tests purpose

Orange Labs, Networks and Carriers Research & Development

Wei Chen^{1,2}, Jérôme Fournier¹, Jean-Charles Gicquel¹

¹Orange labs, France télécom R&D, ²LUNAM Université, Université de Nantes, IRCCyN UMR CNRS 6597 restricted

Context and objective

OLNC - Research & Development - VQEG meeting - June 2012

Objective

To control the perceived depth for testing purpose

Strong relation between shooting parameters and viewing configuration

- Shooting parameters : focal length (f), inter-camera baseline (b), convergence distance (d)
- Visualisation parameters : screen distance (D), screen size (M), inter-ocular distance (B)
 Restituted space = f(shooting and scene parameters, visualisation parameters)
- It is essential to model and control the perceived depth to better understand endusers' opinion about the overall visual experience and related perceptual components

Tools to model and control the perceived depth

Perceived depth Key concepts

- Real space
 - Scene parameters
 - Foreground, background and ROI distances
 - Shooting parameters
 - Baseline, focal length and convergence distance
- Restituted space
 - Visualisation environment
 - Viewing distance, screen size and ocular distance
 - Depth parameters
 - Foreground, background and ROI distances
 - Dimensions: local depth variations (Dx, Dy, Dz)
 - Shape: roundness of objects (Ds=Dx/Dz)
 - Comfortable viewing area
 - Maximum crossed and uncrossed disparities
 - DoF

Stereo calculator software

To control depth rendering and to minimize Visual Discomfort

7

Stereo calculator software

To control depth rendering and to minimize visual discomfort

Impact of shooting parameters on perceived depth (camera baseline case)

To model and control the depth rendering Impact of shooting parameters on the final perceived depth

To model and control the depth rendering Impact of shooting parameters on the final perceived depth

To model and control the depth rendering Impact of shooting parameters on the final perceived depth

Impact of viewing parameters on perceived depth (viewing distance case)

To model and control the depth rendering Impact of visualisation parameters on the final perceived depth

14

To model and control the depth rendering Impact of visualisation parameters on the final perceived depth

15

To model and control the depth rendering Impact of visualisation parameters on the final perceived depth

OLNC – Research & Development – VQEG meeting – June 2012

Conclusion

Importance of scene, shooting and visualization parameters

- Perceived depth as well as depth distortions are depending on:
 - Scene parameters: foreground, background and ROI distances
 - Shooting parameters: camera baseline, focal length and convergence distance
 - Visualization parameters: display size, interocular distance and viewing distance
- Exemple: 1mn of arc criteria used in 2D to define the viewing distance will impact depth perception and visual comfort of viewers
 - 6H viewing distance in case of Line Interleave 3D displays (HD screen)
 - 3H viewing distance in case of active shutters (HD screen)
- Proposal: it is essential to provide scene, shooting and visualization parameters
 - To better understand and to analyse viewers' opinion about the 3D video QoE
 - To compare subjective test results from different studies and/or laboratories

Thank you! Question?

