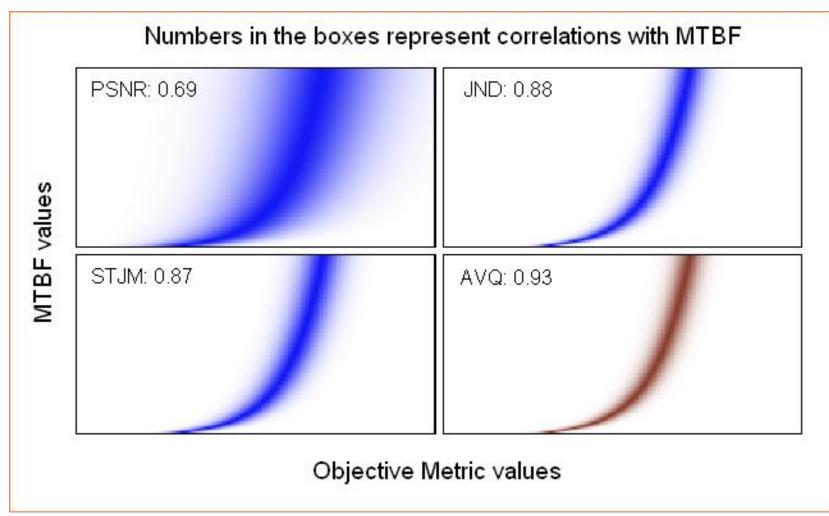


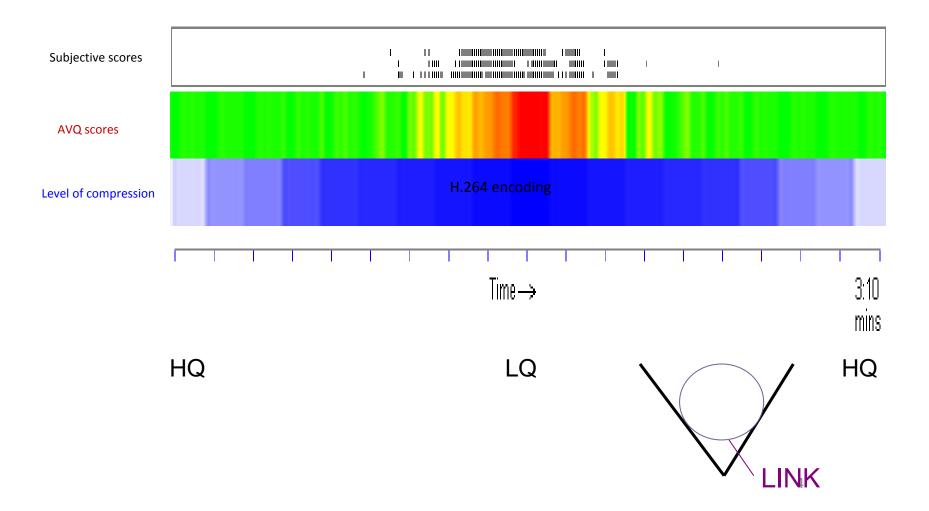
Visibility of Digital Artifacts in 3DTV

Daniel Howard Michael Green Ramanathan Palaniappan Nikil Jayant jayant@gatech.edu


VQEG Meeting, November 2010

GT Research on 2DTV : VQ-NR

Quantitative Calibration of VQ-NR

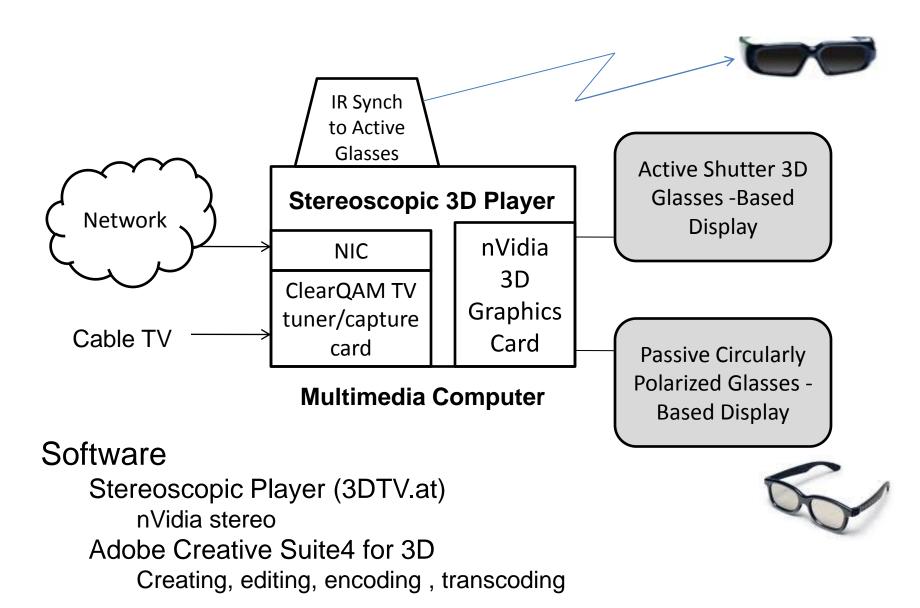

PSNR and JND are Full-Reference Metrics STJM is a Partial-reference Metric

AVQ is a No-Reference Metric

Prediction of Visible Artifacts in H.264 with VQ-NR

Subjective results (artifact detections) are denoted by black dots Objective Scores are color mapped in red-yellow-green

Multichannel VQ-NR Product



Goals of 3DTV Research

- Understanding visibility of artifacts in 3D (vs 2D)
- Developing an actionable taxonomy of 3D artifacts
- Creating an objective VQ tool as in 2D: 3DVQ-(NR)
- Use of 3DVQ in enhancing QoE in 3DTV

Initial Focus on Compression and Networking Effects

Testbed Architecture

Content: Initial Database for Research

- <u>www.nvidia.com/object/3d-vision-3d-movies.html</u>
 - 3D Racing clip as full 3D reference
 - Heidelberg clip for studying isolation
- <u>www.stereomaker.net/sample/index.html</u>
 - Disney, sled and flower clips for compression effects
- www.youtube.com/watch?v=TV12dCXctCA&fmt=22
- <u>www.youtube.com/watch?v=moINIZuG38E</u>
- <u>www.youtube.com/watch?v=3DFizuDjkNQ&playnext</u>
 <u>from=TL&videos=Ub z52EU4RU</u>
- ClearQAM HD captures including Masters Clip

Example of 3D Artifacts: Blockiness

left view is worse...more prominent in video view

Example of 3D Artifacts: Blurriness

this demo better in still..loss of detail in oval area

Left Eye View

Right Eye View

Example of 3D Artifacts: Washed away look

left is better...clear in video view as well

Left Eye View

Right Eye View

Transmitted frame compatible video signal

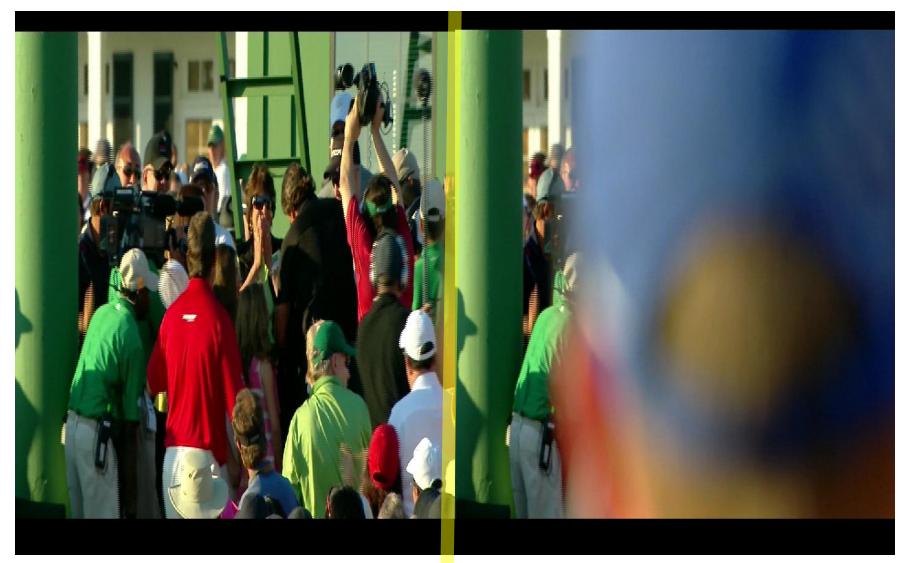
Compression Artifact in 3D FC Example Left more jagged in Zoom

Re-expanded left eye view (magnified)

Re-expanded right eye view (magnified)

Transmitted frame compatible video signal

Network Artifact in 3D FC example



Re-expanded left eye view

Re-expanded right eye view

Blocked View Artifact in 3D FC Example Poor filming

Subjective Test Goals and Design

- Understanding of artifacts in 3D vs 2D
- Calibration of Frame Compatible 3DTV example
- Comparison of active (AS) and passive (PP) displays
- Clips shown to viewers in both AS and PP displays
- Still images shown to viewers in some cases
- Total of 30 subjects, including trained and untrained

Example of Stimulus in Test: 2D and 3D Views

- Viewers shown left eye view in 2D and then 3D version to see if CA were more or less visible in 3D than 2D
- Red oval shows area that viewers noticed as different

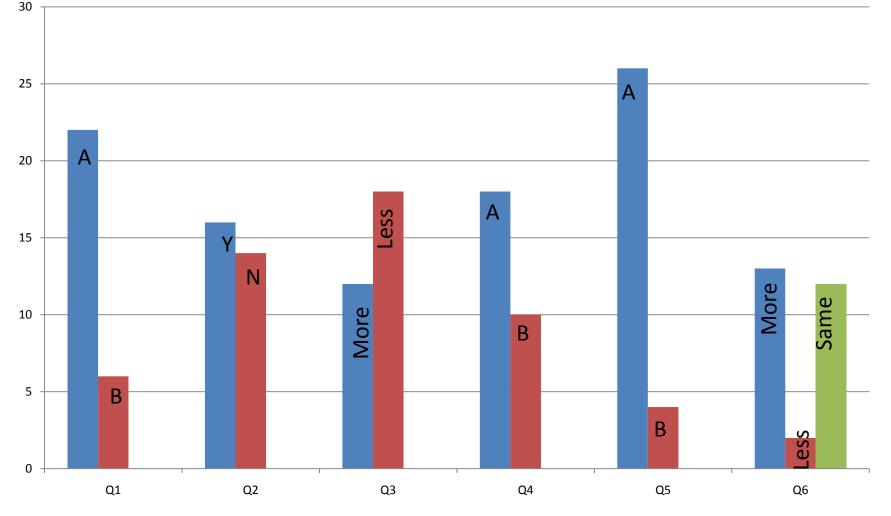
Example of Stimulus in Test: Still Image Pairs Blurriness in 3DFC

Example of Stimulus in Test Program Isolation Triplet Viewers had to block an eye (program) in absence of driver control

Composite

Program 1

Program 2


Questionnaire

- Viewers were asked the following questions
 - (A : active shutter display, B: passive polarization display) :
 - Q1. Full 3D clip: Which was better? (A/B)
 - Q2. Did you see a big difference between full 3D vs. Frame Compatible 3D? (Y/N in A,B)
 - Q3. Are (compression) artifacts more or less visible in 3D? (More/Less in A,B)
 - Q4. Are video artifacts more visible in A or B?
 - Q5. Was the 2-Channel demo better in A or B?
 - Q6. How is your desire to buy a 3DTV or 3D computer monitor after the test? (More/Less/Same)

Results: A=Active Shutter, B=Passive Polarization

- Q1. Full 3D clip: Which was better? (A/B)
- Q2. See a big difference full 3D vs. Frame Compatible? (Y/N)
- Q3. Video artifacts more or less visible in 3D? (More/Less)

- Q4. Video artifacts more visible in A or B?
- Q5. 2-Channel demo better in A or B?
- Q6. Desire to buy a 3DTV or 3D computer monitor after demo? (More/Less/Same)

Conclusions from Subjective Test

- Compared to passive polarization, the active shutter display gave
 - Better full 3D
 - More visibility of artifacts
 - Better isolation for independent channel viewing by multiple viewers
 - But still not good enough separation for serious independent channel viewing
- Subjects were nearly evenly split on
 - Desire to buy a 3DTV after demo:
 - 13 more, 12 same, 2 less
 - Seeing difference in Frame Compatible format
 - 16 yes, 14 no
- Detectability of artifacts in 3D vs. 2D
 - 18 said less detectable in 3D
 - 12 said more detectable in 3D

Next steps in 3D TV Research @ GT

- Creation of a more comprehensive 3DTV database with controllable parameters for encoding and distribution
- Systematic study of artifact causes, masking and cross-masking – subsampling, compression, interpolation, display
- Quantifying depth artifacts due to coding and transmission
- Extension of earlier 2DTV research for quantifying 3DTV artifacts
- Enhancement of 3DTV coding beyond frame-compatible coding:
 - optimization of multiview and scalable video coding (MVC, SVC)
 - preprocessing, compression, error concealment, enhancement
- Usability studies in single-display multiple programs
- Application in 3DTV and Multiplayer games
- Opportunities for Industry Partnership

References

- N.Suresh, O.Yang and N. Jayant, "AVQ: a zero-reference metric for automatic measurement of the quality of visual communications", *Third International Conference on Video Processing and Quality Metrics for Consumer Electronics*, Scottsdale, January 2007.
- W. Husak, "Stereoscopic Delivery of 3D Content to the Home", 2010 Spring Technical Forum Proceedings.
- D.K. Broberg and M.Francisco, "Implementation of Stereoscopic 3D Systems on Cable", 2010 *Spring Technical Forum Proceedings*.
- A.Puri, A., R.V. Kollarits, and B.G. Haskell, "Basics of Stereoscopic Video, New Compression Results with MPEG-2 and a Proposal for MPEG-4", *Signal Processing: Image Communication*, Vol 10, pp. 201-234, 1997.

References (Contd.)

- M. Cowan, "Multiplexing for 3D Distribution", Video Services Forum Meeting, Atlanta, GA, February 2010
- S.McCarthy (ed.), "Glossary for Video & Perceptual Quality of Stereoscopic Video", Prepared as a joint effort of the 3D@Home Consortium and the MPEG Industry Forum 3DTV Working Group", August 2010.
- S. Winkler, "3DTV Quality Issues & Measurement Guidellnes", SCTE Cable-Tec Expo, October 2010.
- P. Merkle, A. Smolic, K. Muller and T. Weigand, "Efficient Prediction Structures for MultiOview Video Coding", IEEE Transactions, 2007.