ON CONFIDENCE AND RESPONSE TIMES OF HUMAN Observers in Subjective Image Quality Assessment

Ulrich Engelke[†], Anthony Maeder^{*}, Hans-Jürgen Zepernick[†]

[†]Blekinge Institute of Technology (BTH) Radio Communications Group

* University of Western Sydney (UWS) School of Computing and Mathematics

ICME'09, New York City, 1st July 2009 (Also presented at VQEG Meeting, Berlin, 24th June 2009)

[†] BTH. * UWS

ULRICH ENGELKE[†], ANTHONY MAEDER^{*}, HANS-JÜRGEN ZEPERNICK[†]

0000	0000	000000	0000	00

INTRODUCTION

SUBJECTIVE QUALITY EXPERIMENT

QUALITY SCORES, CONFIDENCE SCORES, AND RESPONSE TIMES

PREDICTION OF OBSERVER CONFIDENCE

CONCLUSIONS

ULRICH ENGELKE[†], ANTHONY MAEDER^{*}, HANS-JÜRGEN ZEPERNICK[†]

ON CONFIDENCE AND RESPONSE TIMES OF HUMAN OBSERVERS IN SUBJECTIVE IMAGE QUALITY ASSESSMENT

< 口 > < 同 > < 回 > < 回 > .

INTRODUCTION		
0000		

INTRODUCTION

Subjective Quality Experiment

Quality scores, confidence scores, and response times

Prediction of Observer Confidence

Conclusions

< □ > < 部 > < 臣 > < 臣 > 三 のへの [†]BTH.*UWS

ULRICH ENGELKE[†], ANTHONY MAEDER^{*}, HANS-JÜRGEN ZEPERNICK[†]

Introduction 0000	QS/CS/RT 000000	

MOTIVATION

- Mean Opinion Scores (MOS) considered as most reliable measures of perceived visual quality.
- MOS are widely used to design objective visual quality metrics.
- Rating quality is not necessarily an easy task, in particular, when a variety of artifacts is present.
- Confidence intervals provide additional information regarding the agreement between observers.
- Disagreement can be due to:
 - I. Visual quality is hard to judge (for instance very local artifacts).
 - II. Detection and preference of artifacts differs between observers (for instance, some prefer blur others blocking).

[†] BTH. * UWS

In this respect, additional information regarding observer confidence is of interest.

INTRODUCTION		
0000		

CONFIDENCE AND RESPONSE TIMES

CONFIDENCE SCORE (CS)

- Score quantifying how confident an observer was when giving a particular quality score (QS)
- Provided by the observer
- Direct measure of confidence
- May be inconvenient in some cases

Response Time (RT)

- Time required by the observer to give a particular QS
- Measured by the experimenter
- Indirect measure of confidence

[†] bth. * uws

Non-intrusive to the observer

AIMS

- Establish a relationship between QS, CS, and RT.
- Model prediction of mean confidence scores (MCS).

INTRODUCTION OOOO	QS/CS/RT 000000	

CONFIDENCE AND RESPONSE TIMES

CONFIDENCE SCORE (CS)

- Score quantifying how confident an observer was when giving a particular quality score (QS)
- Provided by the observer
- Direct measure of confidence
- May be inconvenient in some cases

RESPONSE TIME (RT)

- Time required by the observer to give a particular QS
- Measured by the experimenter
- Indirect measure of confidence

[†] bth. * uws

Non-intrusive to the observer

AIMS

- Establish a relationship between QS, CS, and RT.
- Model prediction of mean confidence scores (MCS).

INTRODUCTION OOOO	QS/CS/RT 000000	

CONFIDENCE AND RESPONSE TIMES

CONFIDENCE SCORE (CS)

- Score quantifying how confident an observer was when giving a particular quality score (QS)
- Provided by the observer
- Direct measure of confidence
- May be inconvenient in some cases

RESPONSE TIME (RT)

- Time required by the observer to give a particular QS
- Measured by the experimenter
- Indirect measure of confidence

[†] bth. * uws

Non-intrusive to the observer

AIMS

- Establish a relationship between QS, CS, and RT.
- Model prediction of mean confidence scores (MCS).

INTRODUCTION	QS/CS/RT 000000	

HYPOTHESES

- H1 It is easier to rate an image if its quality is either very good or very bad while images of medium quality are harder to judge. As a measure of difficulty when judging image quality we consider a confidence score given by a human observer.
- H2 The confidence of a human observer when rating the quality of an image is strongly related to the response time of the quality rating. As such, we expect a longer response time for images that are harder to judge.
- H3 Observer confidence can be predicted with reasonable accuracy based on the given quality score in combination with the response time measured. Such a confidence prediction may be used as a measure of reliability of a particular MOS.

†rth *uws

INTRODUCTION	QS/CS/RT 000000	

HYPOTHESES

- H1 It is easier to rate an image if its quality is either very good or very bad while images of medium quality are harder to judge. As a measure of difficulty when judging image quality we consider a confidence score given by a human observer.
- H2 The confidence of a human observer when rating the quality of an image is strongly related to the response time of the quality rating. As such, we expect a longer response time for images that are harder to judge.
- H3 Observer confidence can be predicted with reasonable accuracy based on the given quality score in combination with the response time measured. Such a confidence prediction may be used as a measure of reliability of a particular MOS.

†rth *uws

INTRODUCTION	QS/CS/RT 000000	

HYPOTHESES

- H1 It is easier to rate an image if its quality is either very good or very bad while images of medium quality are harder to judge. As a measure of difficulty when judging image quality we consider a confidence score given by a human observer.
- H2 The confidence of a human observer when rating the quality of an image is strongly related to the response time of the quality rating. As such, we expect a longer response time for images that are harder to judge.
- H3 Observer confidence can be predicted with reasonable accuracy based on the given quality score in combination with the response time measured. Such a confidence prediction may be used as a measure of reliability of a particular MOS.

†rth *uws

SUBJECTIVE EXPERIMENT		
0000		

Introduction

SUBJECTIVE QUALITY EXPERIMENT

Quality scores, confidence scores, and response times

Prediction of Observer Confidence

Conclusions

ULRICH ENGELKE[†], ANTHONY MAEDER^{*}, HANS-JÜRGEN ZEPERNICK[†]

SUBJECTIVE EXPERIMENT	QS/CS/RT 000000	

IMAGES

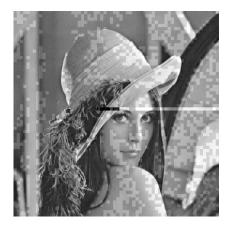
- 7 reference images.
- Simulation model to create test images.

SIMULATION MODEL

- JPEG source encoder.
- (31,21)BCH channel encoder.
- BPSK modulator.
- Rayleigh flat fading channel with AWGN.
- $E_b/N_0 = 5$ dB.

Reference Images

SUBJECTIVE EXPERIMENT	QS/CS/RT 000000	


Blocking

IMAGES

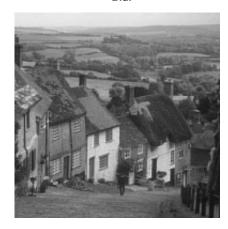
- 7 reference images.
- Simulation model to create test images.

SIMULATION MODEL

- JPEG source encoder.
- (31,21)BCH channel encoder.
- BPSK modulator.
- Rayleigh flat fading channel with AWGN.
- $E_b/N_0 = 5$ dB.

[†] bth. * uws

ULRICH ENGELKE[†], ANTHONY MAEDER^{*}, HANS-JÜRGEN ZEPERNICK[†]


Subjective Experiment 0●00	QS/CS/RT 000000	

IMAGES

- 7 reference images.
- Simulation model to create test images.

SIMULATION MODEL

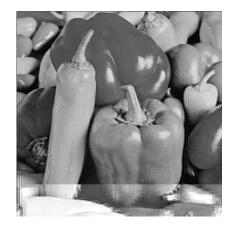
- JPEG source encoder.
- (31,21)BCH channel encoder.
- BPSK modulator.
- Rayleigh flat fading channel with AWGN.
- $E_b/N_0 = 5$ dB.

[†] bth. * uws

Blur

Ulrich Engelke[†], Anthony Maeder^{*}, Hans-Jürgen Zepernick[†]

Subjective Experiment 0000	QS/CS/RT 000000	


IMAGES

- 7 reference images.
- Simulation model to create test images.

SIMULATION MODEL

- JPEG source encoder.
- (31,21)BCH channel encoder.
- BPSK modulator.
- Rayleigh flat fading channel with AWGN.
- $E_b/N_0 = 5$ dB.

Ringing / Intensity Masking

SUBJECTIVE EXPERIMENT	QS/CS/RT 000000	

EXPERIMENT PROCEDURES

- Conducted at University of Western Sydney, Australia.
- Number of participants: 15
- Two sessions of about 10 minutes each.
- ► Test stimuli: 40 test images + 7 reference images in each session.
- Presentation time: 8s/image, 5s/grey screen.

SUBJECTIVE EXPERIMENT	QS/CS/RT 000000	

RATING SCALES

- During grey screen participants were asked to give a quality score (QS) and confidence score (CS).
- Here, CS quantifies the degree of difficulty to provide the corresponding QS.
- Rating scales for QS and CS:

QUALITY SCORE			
Very Good	5		
Good	4		
Fair	3		
Bad	2		
Very Bad	1		

CONFIDENCE SCORE

Very High	5
High	4
Medium	3
Low	2
Very Low	1

[†]BTH. *UWS

 Experimenter measured response time (RT) needed to give both QS and CS.

	QS/CS/RT ●00000	

Introduction

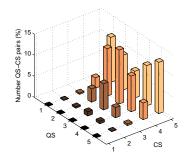
Subjective Quality Experiment

QUALITY SCORES, CONFIDENCE SCORES, AND RESPONSE TIMES

Prediction of Observer Confidence

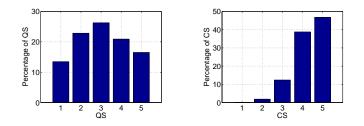
Conclusions

Ulrich Engelke[†], Anthony Maeder^{*}, Hans-Jürgen Zepernick[†]


ON CONFIDENCE AND RESPONSE TIMES OF HUMAN OBSERVERS IN SUBJECTIVE IMAGE QUALITY ASSESSMENT

イロン イロン イヨン イヨン

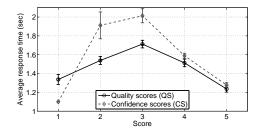
	QS/CS/RT O●OOOO	


OCCURRENCE OF PAIRS OF QS AND CS

- High confidence (CS=5) at either end of the quality scale (QS=1/QS=5). High confidence ratings drop towards the middle of the quality scale.
- ► Lower confidence (CS≤ 4) is predominant in the middle of the quality scale.
- These observations ratify hypothesis H1: images of medium quality are harder to judge.

	QS/CS/RT 00●000	

OVERALL PERCENTAGE OF QS AND CS



[†] bth, * u<u>ws</u>

- Whole spectrum of QS is covered.
- Strong tendency towards high CS scores.

AVERAGE RT FOR QS AND CS

- Average RT increases with decreasing CS (CS=1 may constitute an outlier).
- Average RT increases towards the middle of the quality scale. This is in agreement with decreasing CS towards the middle of QS.
- These observations ratify hypothesis H2: confidence is related to response time.
- As such, RT may contribute information about observer confidence.

ON CONFIDENCE AND RESPONSE TIMES OF HUMAN OBSERVERS IN SUBJECTIVE IMAGE QUALITY ASSESSMENT

< 一型

	QS/CS/RT 0000●0	

DEFINITIONS

- The above findings indicate strong relationships between QS, CS, and RT.
- Consider mean scores over all participants as follows
 - Mean quality (opinion) score (MOS): μ_{QS}
 - Mean confidence score (MCS): µ_{CS}
 - Mean response time (MRT): μ_{RT}
- CS and RT are related to the distance of QS to the middle of the quality scale m_{QS} = 3. We define delta-QS (DQS) as follows

$$\mu_{QS}^{\Delta} = |\mu_{QS} - m_{QS}| \tag{1}$$

[†]BTH. *UWS

ULRICH ENGELKE[†], ANTHONY MAEDER^{*}, HANS-JÜRGEN ZEPERNICK[†]

	QS/CS/RT	
	000000	

Correlations between μ_{QS} , μ_{CS} , and μ_{RT}

Pearson linear correlation coefficient

$$\rho_P(u, v) = \frac{\sum_{k=1}^{K} (u_k - \bar{u})(v_k - \bar{v})}{\sqrt{\sum_{k=1}^{K} (u_k - \bar{u})^2} \sqrt{\sum_{k=1}^{K} (v_k - \bar{v})^2}}$$
(2)

where u_k and v_k represent any combination of μ_{QS}^{Δ} , μ_{CS} , and μ_{RT} .

Interdependencies in terms of correlations

$$\rho_P(\mu_{QS}^{\Delta}, \mu_{CS}) = 0.825$$

$$\rho_P(\mu_{QS}^{\Delta}, \mu_{RT}) = -0.714$$

$$\rho_P(\mu_{CS}, \mu_{RT}) = -0.696$$
(3)

ULRICH ENGELKE[†], ANTHONY MAEDER^{*}, HANS-JÜRGEN ZEPERNICK[†]

	CONFIDENCE PREDICTION	
	0000	

Introduction

Subjective Quality Experiment

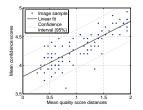
Quality scores, confidence scores, and response times

PREDICTION OF OBSERVER CONFIDENCE

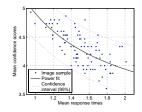
Conclusions

Ulrich Engelke[†], Anthony Maeder^{*}, Hans-Jürgen Zepernick[†]

ON CONFIDENCE AND RESPONSE TIMES OF HUMAN OBSERVERS IN SUBJECTIVE IMAGE QUALITY ASSESSMENT



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


	CONFIDENCE PREDICTION	
	0000	

PREDICTION OF MCS FROM DQS OR MRT

DQS

MRT

- Linear function:
 - $\mu_{CS}^{(QS)}(a,b) = a + b \cdot \mu_{QS}^{\Delta} \quad (4)$
- Power function:

$$\mu_{CS}^{(RT)}(a,b,c) = a + b \cdot \mu_{RT}^{c}$$
 (5)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

a b c Linear fit (4) 3.802 0.483 Power fit (5) 2.679 2.236 -0.829

TABLE: Prediction function parameters.

Ulrich Engelke[†], Anthony Maeder^{*}, Hans-Jürgen Zepernick[†]

	CONFIDENCE PREDICTION	
	0000	

COMBINATORIAL PREDICTION MODEL

• Combinatorial model using weighted L_{p} -norm ($\rho_{P}(\mu_{CS}, \mu_{CS}^{pred}) = 0.843$):

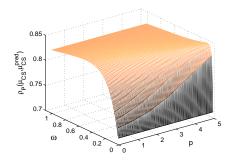
$$\mu_{CS}^{pred}(\omega, \boldsymbol{p}) = \left[\omega \cdot (\mu_{CS}^{(OS)})^{\boldsymbol{p}} + (1-\omega) \cdot (\mu_{CS}^{(RT)})^{\boldsymbol{p}}\right]^{\frac{1}{\boldsymbol{p}}}$$
(6)

with Minkowski parameter $p \in \mathbb{Z}^+$ and relevance weight $\omega \in [0, 1]$.

Simple model ($\rho_P(\mu_{CS}, \mu_{CS}^{pred}) = 0.845$):

$$\mu_{CS}^{pred}(\omega, p) = \left[\omega \cdot \mu_{QS}^{p} + (1 - \omega) \cdot \left(\frac{1}{\mu_{RT}}\right)^{p}\right]^{\frac{1}{p}}$$
(7)

Optimal parameters through exhaustive search:


$$p_{Opt} = 3.036, \qquad \omega_{Opt} = 0.184$$
 (8)

[†] bth. * uws

The correlations ratify hypothesis H3: observer confidence can be predicted with reasonable accuracy based on QS and RT.

	CONFIDENCE PREDICTION	
	0000	

Dependence of Model on Parameters ${\pmb \rho}$ and ω

The model is strongly dependent on the relevance weight ω and less dependent on the Minkowski parameter p.

	QS/CS/RT 000000	Conclusions •••

Introduction

Subjective Quality Experiment

Quality scores, confidence scores, and response times

Prediction of Observer Confidence

CONCLUSIONS

ULRICH ENGELKE[†], ANTHONY MAEDER^{*}, HANS-JÜRGEN ZEPERNICK[†]

ON CONFIDENCE AND RESPONSE TIMES OF HUMAN OBSERVERS IN SUBJECTIVE IMAGE QUALITY ASSESSMENT

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

	QS/CS/RT 000000	Conclusions O

CONCLUSIONS

- We analysed the relationship between QS, CS, and RT as obtained in a subjective experiment.
- We revealed that valuable information about an observers confidence can be derived from both QS and RT.
- ▶ We proposed a model for confidence prediction based on QS and RT.
- Future work: analyse relationship of our prediction model to confidence intervals.

Thank you for your attention.

Ulrich Engelke Blekinge Institute of Technology Mobile: +46-768-845877 ulrich.engelke@bth.se

ULRICH ENGELKE[†], ANTHONY MAEDER^{*}, HANS-JÜRGEN ZEPERNICK[†]

ON CONFIDENCE AND RESPONSE TIMES OF HUMAN OBSERVERS IN SUBJECTIVE IMAGE QUALITY ASSESSMENT

[†] bth, * uws

<ロ> (四) (四) (日) (日) (日)