psiltecrinics

Study of Rating Scales for Subjective Video Quality Assessment Using Single-Stimulus Presentation

Quan Huynh-Thu (Psytechnics Ltd)
Alexander Raake, Marie-Neige Garcia (DT Labs) Philip Corriveau (Intel Corp)
Filippo Speranza (CRC Canada)

Motivation of Study

- Provide data to help VQEG make informed decisions:
- Current discussions on adequate subjective test methodology and rating scale to use in on-going and future VQEG validation projects
- Advance knowledge in the field of subjective quality assessment

Scope and Methodology of Study

- Scope:
- Single-stimulus presentation
- Retrospective quality rating
- Methodology:
- Unique set of processed videos
- Unique test lab
- Unique stimulus pattern presentation
- Different rating scales:
- 5-point discrete scale
- 9-point discrete scale
- 5-point continuous scale
- 11-point continuous scale

Experimental Design

- Video format: HD1080p
- Video length: 12 seconds
- No audio
- Test design:
- 8 SRCs
- 16 HRCs (incl. hidden reference condition):
- Coding
- Coding + transmission errors (slicing and frame freezing)
- $8 \times 16=128$ PVSs
- Codec: H. 264
- Bit rates: 2 - 16 Mbps
- PLR: 0.25-4 \%
- 24 viewers per experiment (after post-hoc screening as per VQEG HDTV test plan)

Experimental Set-up

- Psytechnics subjective testing facilities
- Test environment conforming to ITU Rec.
- 24 " LCD display, 1080p native resolution
- Viewing distance: 3H
- One viewer at a time in front of display
- Different randomized presentation order for each subject

Rating Scales

Test Instructions for Continuous Scales

- For 5-pt and 11-pt continuous scales:
- "You can place the slider at any point on the scale"
- "You can click on the slider and drag it to the desired position or, click on the scale at the desired position (the slider will jump directly to this position)"
- For 11-pt scale:
- Did not instruct viewers to avoid "0" or "10"
- Verbal descriptions of " 0 " and " 10 " presented in the written instructions but on the on-screen scale during the test
- Viewers instructed that practice trials will present examples of "best" and "worst" qualities

Distributions of Ratings

Distributions of Ratings Using 5 Bins

Relationship Between Scales

- Quantization effects with continuous scales
- Most viewers tend to align their ratings with marks and labels on continuous scales
- Re-scaling needed for comparison between scales
- Re-scaling of all votes on same scale
- Re-scaling using a linear transformation aligning labels between scales:
- Exp1: stays between [1,5]
- Exp2: score ${ }_{\text {map }}=\left(\right.$ score $\left._{\text {orig }} / 2\right)+0.5$
- Exp3: stays between $[1,5]$
- Exp4: score $_{\text {map }}=\left(\right.$ score $\left._{\text {orig }} / 2\right)+0.5$

Comparison of Distribution of Ratings

5-pt discrete vs. continuous scale

5-pt vs. 11-pt continuous scale

5-pt vs. 9-pt discrete scale

5-pt discrete vs. 11-pt continuous scale

Comparison of Condition MOS and CI

Scatter plots of MOS

5-pt discrete vs. continuous scale

5-pt vs. 9-pt discrete scale

5-pt vs. 11-pt continuous scale 5-pt discrete vs. 11-pt continuous scale

Scatter plots of Condition MOS

5-pt discrete vs. continuous scale

5-pt vs. 9-pt discrete scale

$R=0.99$

5-pt vs. 11-pt continuous scale 5-pt discrete vs. 11-pt continuous scale

Student T-tests and ANOVA

	Exp1 (5-pt discr.)	Exp2 (11-pt cont.)	Exp3 (5-pt cont.)	Exp4 (9-pt discr.)
Mean MOS	2.8727	2.8047	2.8936	2.8337
Mean CI	0.2952	0.2973	0.2932	0.2839

- No statistical differences between mean quality
- No statistical differences between mean CI

Preliminary conclusions

- Data show that viewers tend to align their ratings with the positions of the labels on the scales
- There is no significant difference between the results obtained with the different scales

Future Work

- Comparison using different re-scaling approaches
- More detailed analysis

