

Study of Rating Scales for Subjective Video Quality Assessment Using Single-Stimulus Presentation

Quan Huynh-Thu (Psytechnics Ltd) Alexander Raake, Marie-Neige Garcia (DT Labs) Philip Corriveau (Intel Corp) Filippo Speranza (CRC Canada)

Motivation of Study

- Provide data to help VQEG make informed decisions:
 - Current discussions on adequate subjective test methodology and rating scale to use in on-going and future VQEG validation projects
- Advance knowledge in the field of subjective quality assessment

Scope and Methodology of Study

- Scope:
 - Single-stimulus presentation
 - Retrospective quality rating
- Methodology:
 - Unique set of processed videos
 - Unique test lab
 - Unique stimulus pattern presentation
 - Different rating scales:
 - 5-point discrete scale
 - 9-point discrete scale
 - 5-point continuous scale
 - 11-point continuous scale

Experimental Design

- Video format: HD1080p
- Video length: 12 seconds
- No audio
- Test design:
 - 8 SRCs
 - 16 HRCs (incl. hidden reference condition):
 - Coding
 - Coding + transmission errors (slicing and frame freezing)
 - 8 x 16 = 128 PVSs
- Codec: H.264
- Bit rates: 2 16 Mbps
- PLR: 0.25 4 %
- 24 viewers per experiment (after post-hoc screening as per VQEG HDTV test plan)

Experimental Set-up

- Psytechnics subjective testing facilities
- Test environment conforming to ITU Rec.
- 24" LCD display, 1080p native resolution
- Viewing distance: 3H
- One viewer at a time in front of display
- Different randomized presentation order for each subject

Rating Scales

Test Instructions for Continuous Scales

- For 5-pt and 11-pt continuous scales:
 - "You can place the slider at any point on the scale"
 - "You can click on the slider and drag it to the desired position or, click on the scale at the desired position (the slider will jump directly to this position)"
- For 11-pt scale:
 - Did **not** instruct viewers to avoid "0" or "10"
 - Verbal descriptions of "0" and "10" presented in the written instructions but on the on-screen scale during the test
 - Viewers instructed that practice trials will present examples of "best" and "worst" qualities

Distributions of Ratings

Distributions of Ratings Using 5 Bins

Relationship Between Scales

- Quantization effects with continuous scales
 - Most viewers tend to align their ratings with marks and labels on continuous scales
- Re-scaling needed for comparison between scales
 - Re-scaling of all votes on same scale
 - Re-scaling using a linear transformation aligning labels between scales:
 - Exp1: stays between [1,5]
 - Exp2: $score_{map} = (score_{orig} / 2) + 0.5$
 - Exp3: stays between [1,5]
 - Exp4: $score_{map} = (score_{orig} / 2) + 0.5$

Comparison of Distribution of Ratings

5-pt discrete vs. continuous scale

9-pt disci 45 5-pt discr. % of votes (5-pt discr. scale) % of votes (9-pt discr. scale) 35 35 30 30 25 25 20 15 15 10 5 П Bad Poor Fair Good Excellent Ratings

5-pt vs. 11-pt continuous scale

5-pt discrete vs. 11-pt continuous scale

5-pt vs. 9-pt discrete scale

Comparison of Condition MOS and CI

Scatter plots of MOS

5-pt discrete vs. continuous scale

5-pt vs. 9-pt discrete scale MOS (9-pt discrete scale) R=0.98 Hidden reference Processed

5-pt vs. 11-pt continuous scale 5-pt discrete vs. 11-pt continuous scale

MOS (5-pt discrete scale)

2

Scatter plots of Condition MOS

5-pt discrete vs. continuous scale 5-pt vs. 9-pt discrete scale Condition MOS (5-pt continuous scale) Condition MOS (9-pt discrete scale) 4 3.5 R=0.99 R=0.99 2.5 2.5 3.5 2 2.5 3 3.5 4.5 1.5 2 3 4 4.5 1.5 4 Condition MOS (5-pt discrete scale) Condition MOS (5-pt discrete scale)

5-pt vs. 11-pt continuous scale 5-pt discrete vs. 11-pt continuous scale

Student T-tests and ANOVA

	Exp1 (5-pt discr.)	Exp2 (11-pt cont.)	Exp3 (5-pt cont.)	Exp4 (9-pt discr.)
Mean MOS	2.8727	2.8047	2.8936	2.8337
Mean Cl	0.2952	0.2973	0.2932	0.2839

- No statistical differences between mean quality
- No statistical differences between mean CI

Preliminary conclusions

- Data show that viewers tend to align their ratings with the positions of the labels on the scales
- There is no significant difference between the results obtained with the different scales

Future Work

- Comparison using different re-scaling approaches
- More detailed analysis